Charakterisierung poröser Medien mittels Machine Learning in Python mit scikit−learn, Tensorflow und tflearn:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Elektronisch E-Book |
Sprache: | German |
Veröffentlicht: |
Erlangen ; Nürnberg
Friedrich-Alexander-Universität Erlangen-Nürnberg
2024
|
Schriftenreihe: | Proceedings of the Institute for Multiscale Simulation
|
Schlagworte: | |
Online-Zugang: | kostenfrei kostenfrei kostenfrei kostenfrei |
Beschreibung: | 1 Online-Ressource |
DOI: | 10.25593/open-fau-741 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV049871817 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 240918s2024 gw om||| 00||| ger d | ||
015 | |a 24,O07 |2 dnb | ||
016 | 7 | |a 1331965969 |2 DE-101 | |
024 | 7 | |a 10.25593/open-fau-741 |2 doi | |
024 | 7 | |a urn:nbn:de:101:1-2406070506447.547535709874 |2 urn | |
035 | |a (OCoLC)1466911910 | ||
035 | |a (DE-599)DNB1331965969 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |8 3\p |a ger | |
044 | |a gw |c XA-DE-BY | ||
049 | |a DE-29 | ||
084 | |8 2\p |a 624 |2 23sdnb | ||
084 | |8 1\p |a 622.338 |2 23ksdnb | ||
100 | 1 | |a Hall, Clemens |e Verfasser |0 (DE-588)134234989X |4 aut | |
245 | 1 | 0 | |a Charakterisierung poröser Medien mittels Machine Learning in Python mit scikit−learn, Tensorflow und tflearn |c von Clemens Hall |
264 | 1 | |a Erlangen ; Nürnberg |b Friedrich-Alexander-Universität Erlangen-Nürnberg |c 2024 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Proceedings of the Institute for Multiscale Simulation | |
502 | |b Masterarbeit |c Friedrich-Alexander-Universität Erlangen-Nürnberg |d 2018 | ||
583 | 1 | |a Archivierung/Langzeitarchivierung gewährleistet |5 DE-101 |2 pdager | |
650 | 0 | 7 | |8 4\p |a Poröser Stoff |0 (DE-588)4046811-2 |2 gnd |
650 | 0 | 7 | |8 5\p |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |
650 | 0 | 7 | |8 6\p |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |
650 | 0 | 7 | |8 7\p |a TensorFlow |0 (DE-588)1153577011 |2 gnd |
653 | |a pourous media, characterization, machine learning, CT tomograms | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
856 | 4 | 0 | |u https://open.fau.de/handle/openfau/31254 |x Verlag |z kostenfrei |3 Volltext |
856 | 4 | 0 | |u https://doi.org/10.25593/open-fau-741 |x Resolving-System |z kostenfrei |3 Volltext |
856 | 4 | 0 | |u https://nbn-resolving.org/urn:nbn:de:101:1-2406070506447.547535709874 |x Resolving-System |z kostenfrei |3 Volltext |
856 | 4 | 0 | |u https://d-nb.info/1331965969/34 |x Langzeitarchivierung Nationalbibliothek |z kostenfrei |3 Volltext |
883 | 0 | |8 1\p |a emakn |c 0,18771 |d 20240608 |q DE-101 |u https://d-nb.info/provenance/plan#emakn | |
883 | 0 | |8 2\p |a emasg |c 0,38851 |d 20240608 |q DE-101 |u https://d-nb.info/provenance/plan#emasg | |
883 | 1 | |8 3\p |a npi |d 20240607 |q DE-101 |u https://d-nb.info/provenance/plan#npi | |
883 | 0 | |8 4\p |a emagnd |c 0,34966 |d 20240608 |q DE-101 |u https://d-nb.info/provenance/plan#emagnd | |
883 | 0 | |8 5\p |a emagnd |c 0,27093 |d 20240608 |q DE-101 |u https://d-nb.info/provenance/plan#emagnd | |
883 | 0 | |8 6\p |a emagnd |c 0,09897 |d 20240608 |q DE-101 |u https://d-nb.info/provenance/plan#emagnd | |
883 | 0 | |8 7\p |a emagnd |c 0,05547 |d 20240608 |q DE-101 |u https://d-nb.info/provenance/plan#emagnd | |
912 | |a ebook | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035211290 |
Datensatz im Suchindex
_version_ | 1817696733859151873 |
---|---|
adam_text | |
any_adam_object | |
author | Hall, Clemens |
author_GND | (DE-588)134234989X |
author_facet | Hall, Clemens |
author_role | aut |
author_sort | Hall, Clemens |
author_variant | c h ch |
building | Verbundindex |
bvnumber | BV049871817 |
collection | ebook |
ctrlnum | (OCoLC)1466911910 (DE-599)DNB1331965969 |
doi_str_mv | 10.25593/open-fau-741 |
format | Thesis Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV049871817</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240918s2024 gw om||| 00||| ger d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">24,O07</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1331965969</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.25593/open-fau-741</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">urn:nbn:de:101:1-2406070506447.547535709874</subfield><subfield code="2">urn</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1466911910</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1331965969</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BY</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">2\p</subfield><subfield code="a">624</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">622.338</subfield><subfield code="2">23ksdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hall, Clemens</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)134234989X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Charakterisierung poröser Medien mittels Machine Learning in Python mit scikit−learn, Tensorflow und tflearn</subfield><subfield code="c">von Clemens Hall</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Erlangen ; Nürnberg</subfield><subfield code="b">Friedrich-Alexander-Universität Erlangen-Nürnberg</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Proceedings of the Institute for Multiscale Simulation</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Masterarbeit</subfield><subfield code="c">Friedrich-Alexander-Universität Erlangen-Nürnberg</subfield><subfield code="d">2018</subfield></datafield><datafield tag="583" ind1="1" ind2=" "><subfield code="a">Archivierung/Langzeitarchivierung gewährleistet</subfield><subfield code="5">DE-101</subfield><subfield code="2">pdager</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">4\p</subfield><subfield code="a">Poröser Stoff</subfield><subfield code="0">(DE-588)4046811-2</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">5\p</subfield><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">6\p</subfield><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">7\p</subfield><subfield code="a">TensorFlow</subfield><subfield code="0">(DE-588)1153577011</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">pourous media, characterization, machine learning, CT tomograms</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://open.fau.de/handle/openfau/31254</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.25593/open-fau-741</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://nbn-resolving.org/urn:nbn:de:101:1-2406070506447.547535709874</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://d-nb.info/1331965969/34</subfield><subfield code="x">Langzeitarchivierung Nationalbibliothek</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">emakn</subfield><subfield code="c">0,18771</subfield><subfield code="d">20240608</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emakn</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">emasg</subfield><subfield code="c">0,38851</subfield><subfield code="d">20240608</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emasg</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">npi</subfield><subfield code="d">20240607</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#npi</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">emagnd</subfield><subfield code="c">0,34966</subfield><subfield code="d">20240608</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emagnd</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">emagnd</subfield><subfield code="c">0,27093</subfield><subfield code="d">20240608</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emagnd</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">emagnd</subfield><subfield code="c">0,09897</subfield><subfield code="d">20240608</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emagnd</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">7\p</subfield><subfield code="a">emagnd</subfield><subfield code="c">0,05547</subfield><subfield code="d">20240608</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emagnd</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035211290</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV049871817 |
illustrated | Not Illustrated |
indexdate | 2024-12-06T13:11:30Z |
institution | BVB |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035211290 |
oclc_num | 1466911910 |
open_access_boolean | 1 |
owner | DE-29 |
owner_facet | DE-29 |
physical | 1 Online-Ressource |
psigel | ebook |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Friedrich-Alexander-Universität Erlangen-Nürnberg |
record_format | marc |
series2 | Proceedings of the Institute for Multiscale Simulation |
spelling | Hall, Clemens Verfasser (DE-588)134234989X aut Charakterisierung poröser Medien mittels Machine Learning in Python mit scikit−learn, Tensorflow und tflearn von Clemens Hall Erlangen ; Nürnberg Friedrich-Alexander-Universität Erlangen-Nürnberg 2024 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Proceedings of the Institute for Multiscale Simulation Masterarbeit Friedrich-Alexander-Universität Erlangen-Nürnberg 2018 Archivierung/Langzeitarchivierung gewährleistet DE-101 pdager 4\p Poröser Stoff (DE-588)4046811-2 gnd 5\p Maschinelles Lernen (DE-588)4193754-5 gnd 6\p Neuronales Netz (DE-588)4226127-2 gnd 7\p TensorFlow (DE-588)1153577011 gnd pourous media, characterization, machine learning, CT tomograms (DE-588)4113937-9 Hochschulschrift gnd-content https://open.fau.de/handle/openfau/31254 Verlag kostenfrei Volltext https://doi.org/10.25593/open-fau-741 Resolving-System kostenfrei Volltext https://nbn-resolving.org/urn:nbn:de:101:1-2406070506447.547535709874 Resolving-System kostenfrei Volltext https://d-nb.info/1331965969/34 Langzeitarchivierung Nationalbibliothek kostenfrei Volltext 1\p emakn 0,18771 20240608 DE-101 https://d-nb.info/provenance/plan#emakn 2\p emasg 0,38851 20240608 DE-101 https://d-nb.info/provenance/plan#emasg 3\p npi 20240607 DE-101 https://d-nb.info/provenance/plan#npi 4\p emagnd 0,34966 20240608 DE-101 https://d-nb.info/provenance/plan#emagnd 5\p emagnd 0,27093 20240608 DE-101 https://d-nb.info/provenance/plan#emagnd 6\p emagnd 0,09897 20240608 DE-101 https://d-nb.info/provenance/plan#emagnd 7\p emagnd 0,05547 20240608 DE-101 https://d-nb.info/provenance/plan#emagnd |
spellingShingle | Hall, Clemens Charakterisierung poröser Medien mittels Machine Learning in Python mit scikit−learn, Tensorflow und tflearn 4\p Poröser Stoff (DE-588)4046811-2 gnd 5\p Maschinelles Lernen (DE-588)4193754-5 gnd 6\p Neuronales Netz (DE-588)4226127-2 gnd 7\p TensorFlow (DE-588)1153577011 gnd |
subject_GND | (DE-588)4046811-2 (DE-588)4193754-5 (DE-588)4226127-2 (DE-588)1153577011 (DE-588)4113937-9 |
title | Charakterisierung poröser Medien mittels Machine Learning in Python mit scikit−learn, Tensorflow und tflearn |
title_auth | Charakterisierung poröser Medien mittels Machine Learning in Python mit scikit−learn, Tensorflow und tflearn |
title_exact_search | Charakterisierung poröser Medien mittels Machine Learning in Python mit scikit−learn, Tensorflow und tflearn |
title_full | Charakterisierung poröser Medien mittels Machine Learning in Python mit scikit−learn, Tensorflow und tflearn von Clemens Hall |
title_fullStr | Charakterisierung poröser Medien mittels Machine Learning in Python mit scikit−learn, Tensorflow und tflearn von Clemens Hall |
title_full_unstemmed | Charakterisierung poröser Medien mittels Machine Learning in Python mit scikit−learn, Tensorflow und tflearn von Clemens Hall |
title_short | Charakterisierung poröser Medien mittels Machine Learning in Python mit scikit−learn, Tensorflow und tflearn |
title_sort | charakterisierung poroser medien mittels machine learning in python mit scikit−learn tensorflow und tflearn |
topic | 4\p Poröser Stoff (DE-588)4046811-2 gnd 5\p Maschinelles Lernen (DE-588)4193754-5 gnd 6\p Neuronales Netz (DE-588)4226127-2 gnd 7\p TensorFlow (DE-588)1153577011 gnd |
topic_facet | Poröser Stoff Maschinelles Lernen Neuronales Netz TensorFlow Hochschulschrift |
url | https://open.fau.de/handle/openfau/31254 https://doi.org/10.25593/open-fau-741 https://nbn-resolving.org/urn:nbn:de:101:1-2406070506447.547535709874 https://d-nb.info/1331965969/34 |
work_keys_str_mv | AT hallclemens charakterisierungporosermedienmittelsmachinelearninginpythonmitscikitlearntensorflowundtflearn |