Foundations of the Pricing of Financial Derivatives: Theory and Analysis
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Newark
John Wiley & Sons, Incorporated
2024
|
Ausgabe: | 1st ed |
Schriftenreihe: | Frank J. Fabozzi Series
|
Schlagworte: | |
Online-Zugang: | DE-2070s |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (621 Seiten) |
ISBN: | 9781394179671 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV049871689 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 240918s2024 |||| o||u| ||||||eng d | ||
020 | |a 9781394179671 |9 978-1-394-17967-1 | ||
035 | |a (ZDB-30-PQE)EBC31093693 | ||
035 | |a (ZDB-30-PAD)EBC31093693 | ||
035 | |a (ZDB-89-EBL)EBL31093693 | ||
035 | |a (OCoLC)1419872061 | ||
035 | |a (DE-599)BVBBV049871689 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-2070s | ||
082 | 0 | |a 332.6457 | |
084 | |a QK 660 |0 (DE-625)141676: |2 rvk | ||
084 | |a QK 800 |0 (DE-625)141681: |2 rvk | ||
100 | 1 | |a Brooks, Robert E. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Foundations of the Pricing of Financial Derivatives |b Theory and Analysis |
250 | |a 1st ed | ||
264 | 1 | |a Newark |b John Wiley & Sons, Incorporated |c 2024 | |
264 | 4 | |c ©2024 | |
300 | |a 1 Online-Ressource (621 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Frank J. Fabozzi Series | |
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction and Overview -- 1.1 Motivation for This Book -- 1.2 What Is a Derivative? -- 1.3 Options Versus Forwards, Futures, and Swaps -- 1.4 Size and Scope of the Financial Derivatives Markets -- 1.5 Outline and Features of the Book -- 1.6 Final Thoughts and Preview -- Questions and Problems -- Notes -- Part I Basic Foundations for Derivative Pricing -- Chapter 2 Boundaries, Limits, and Conditions on Option Prices -- 2.1 Setup, Definitions, and Arbitrage -- 2.2 Absolute Minimum and Maximum Values -- 2.3 The Value of an American Option Relative to the Value of a European Option -- 2.4 The Value of an Option at Expiration -- 2.5 The Lower Bounds of European and American Options and the Optimality of Early Exercise -- 2.6 Differences in Option Values by Exercise Price -- 2.7 The Effect of Differences in Time to Expiration -- 2.8 The Convexity Rule -- 2.9 Put‐Call Parity -- 2.10 The Effect of Interest Rates on Option Prices -- 2.11 The Effect of Volatility on Option Prices -- 2.12 The Building Blocks of European Options -- 2.13 Recap and Preview -- Questions and Problems -- Notes -- Chapter 3 Elementary Review of Mathematics for Finance -- 3.1 Summation Notation -- 3.2 Product Notation -- 3.3 Logarithms and Exponentials -- 3.4 Series Formulas -- 3.5 Calculus Derivatives -- 3.6 Integration -- 3.7 Differential Equations -- 3.8 Recap and Preview -- Questions and Problems -- Notes -- Chapter 4 Elementary Review of Probability for Finance -- 4.1 Marginal, Conditional, and Joint Probabilities -- 4.2 Expectations, Variances, and Covariances of Discrete Random Variables -- 4.3 Continuous Random Variables -- 4.4 Some General Results in Probability Theory -- 4.5 Technical Introduction to Common Probability Distributions Used in Finance -- 4.6 Recap and Preview -- Questions and Problems | |
505 | 8 | |a Notes -- Chapter 5 Financial Applications of Probability Distributions -- 5.1 The Univariate Normal Probability Distribution -- 5.2 Contrasting the Normal with the Lognormal Probability Distribution -- 5.3 Bivariate Normal Probability Distribution -- 5.4 The Bivariate Lognormal Probability Distribution -- 5.5 Recap and Preview -- Appendix 5A An Excel Routine for the Bivariate Normal Probability -- Questions and Problems -- Notes -- Chapter 6 Basic Concepts in Valuing Risky Assets and Derivatives -- 6.1 Valuing Risky Assets -- 6.2 Risk‐Neutral Pricing in Discrete Time -- 6.3 Identical Assets and the Law of One Price -- 6.4 Derivative Contracts -- 6.5 A First Look at Valuing Options -- 6.6 A World of Risk‐Averse and Risk‐Neutral Investors -- 6.7 Pricing Options Under Risk Aversion -- 6.8 Recap and Preview -- Questions and Problems -- Notes -- Part II Discrete Time Derivatives Pricing Theory -- Chapter 7 The Binomial Model -- 7.1 The One‐Period Binomial Model for Calls -- 7.2 The One‐Period Binomial Model for Puts -- 7.3 Arbitraging Price Discrepancies -- 7.4 The Multiperiod Model -- 7.5 American Options and Early Exercise in the Binomial Framework -- 7.6 Dividends and Recombination -- 7.7 Path Independence and Path Dependence -- 7.8 Recap and Preview -- Appendix 7A Derivation of Equation (7.9) -- Appendix 7B Pascal's Triangle and the Binomial Model -- Questions and Problems -- Notes -- Chapter 8 Calculating the Greeks in the Binomial Model -- 8.1 Standard Approach -- 8.2 An Enhanced Method for Estimating Delta and Gamma -- 8.3 Numerical Examples -- 8.4 Dividends -- 8.5 Recap and Preview -- Questions and Problems -- Notes -- Chapter 9 Convergence of the Binomial Model to the Black‐Scholes‐Merton Model -- 9.1 Setting Up the Problem -- 9.2 The Hsia Proof -- 9.3 Put Options -- 9.4 Dividends -- 9.5 Recap and Preview -- Questions and Problems -- Notes | |
505 | 8 | |a Part III Continuous Time Derivatives Pricing Theory -- Chapter 10 The Basics of Brownian Motion and Wiener Processes -- 10.1 Brownian Motion -- 10.2 The Wiener Process -- 10.3 Properties of a Model of Asset Price Fluctuations -- 10.4 Building a Model of Asset Price Fluctuations -- 10.5 Simulating Brownian Motion and Wiener Processes -- 10.6 Formal Statement of Wiener Process Properties -- 10.7 Recap and Preview -- Appendix 10A Simulation of the Wiener Process and the Square of the Wiener Process for Successively Smaller Time Intervals -- Questions and Problems -- Notes -- Chapter 11 Stochastic Calculus and Itô's Lemma -- 11.1 A Result from Basic Calculus -- 11.2 Introducing Stochastic Calculus and Itô's Lemma -- 11.3 Itô's Integral -- 11.4 The Integral Form of Itô's Lemma -- 11.5 Some Additional Cases of Itô's Lemma -- 11.6 Recap and Preview -- Appendix 11A Technical Stochastic Integral Results -- 11A.1 Selected Stochastic Integral Results -- 11A.2 General Linear Theorem -- Questions and Problems -- Notes -- Chapter 12 Properties of the Lognormal and Normal Diffusion Processes for Modeling Assets -- 12.1 A Stochastic Process for the Asset Relative Return -- 12.2 A Stochastic Process for the Asset Price Change -- 12.3 Solving the Stochastic Differential Equation -- 12.4 Solutions to Stochastic Differential Equations Are Not Always the Same as Solutions to Corresponding Ordinary Differential Equations -- 12.5 Finding the Expected Future Asset Price -- 12.6 Geometric Brownian Motion or Arithmetic Brownian Motion? -- 12.7 Recap and Preview -- Questions and Problems -- Notes -- Chapter 13 Deriving the Black‐Scholes‐Merton Model -- 13.1 Derivation of the European Call Option Pricing Formula -- 13.2 The European Put Option Pricing Formula -- 13.3 Deriving the Black‐Scholes‐Merton Model as an Expected Value | |
505 | 8 | |a 13.4 Deriving the Black‐Scholes‐Merton Model as the Solution of a Partial Differential Equation -- 13.5 Decomposing the Black‐Scholes‐Merton Model into Binary Options -- 13.6 Black‐Scholes‐Merton Option Pricing When There Are Dividends -- 13.7 Selected Black‐Scholes‐Merton Model Limiting Results -- 13.8 Computing the Black‐Scholes‐Merton Option Pricing Model Values -- 13.9 Recap and Preview -- Appendix 13.A Deriving the Arithmetic Brownian Motion Option Pricing Model -- Questions and Problems -- Notes -- Chapter 14 The Greeks in the Black‐Scholes‐Merton Model -- 14.1 Delta: The First Derivative with Respect to the Underlying Price -- 14.2 Gamma: The Second Derivative with Respect to the Underlying Price -- 14.3 Theta: The First Derivative with Respect to Time -- 14.4 Verifying the Solution of the Partial Differential Equation -- 14.5 Selected Other Partial Derivatives of the Black‐Scholes‐Merton Model -- 14.6 Partial Derivatives of the Black‐Scholes‐Merton European Put Option Pricing Model -- 14.7 Incorporating Dividends -- 14.8 Greek Sensitivities -- 14.9 Elasticities -- 14.10 Extended Greeks of the Black‐Scholes‐Merton Option Pricing Model -- 14.11 Recap and Preview -- Questions and Problems -- Notes -- Chapter 15 Girsanov's Theorem in Option Pricing -- 15.1 The Martingale Representation Theorem -- 15.2 Introducing the Radon‐Nikodym Derivative by Changing the Drift for a Single Random Variable -- 15.3 A Complete Probability Space -- 15.4 Formal Statement of Girsanov's Theorem -- 15.5 Changing the Drift in a Continuous Time Stochastic Process -- 15.6 Changing the Drift of an Asset Price Process -- 15.7 Recap and Preview -- Questions and Problems -- Notes -- Chapter 16 Connecting Discrete and Continuous Brownian Motions -- 16.1 Brownian Motion in a Discrete World -- 16.2 Moving from a Discrete to a Continuous World | |
505 | 8 | |a 16.3 Changing the Probability Measure with the Radon‐Nikodym Derivative in Discrete Time -- 16.4 The Kolmogorov Equations -- 16.5 Recap and Preview -- Questions and Problems -- Notes -- Part IV Extensions and Generalizations of Derivative Pricing -- Chapter 17 Applying Linear Homogeneity to Option Pricing -- 17.1 Introduction to Exchange Options -- 17.2 Homogeneous Functions -- 17.3 Euler's Rule -- 17.4 Using Linear Homogeneity and Euler's Rule to Derive the Black‐Scholes‐Merton Model -- 17.5 Exchange Option Pricing -- 17.6 Spread Options3 -- 17.7 Forward Start Options -- 17.8 Recap and Preview -- Appendix 17A Linear Homogeneity and the Arithmetic Brownian Motion Model -- Appendix 17B Multivariate Itô's Lemma -- Appendix 17C Greeks of the Exchange Option Model -- Questions and Problems -- Notes -- Chapter 18 Compound Option Pricing -- 18.1 Equity as an Option -- 18.2 Valuing an Option on the Equity as a Compound Option -- 18.3 Compound Option Boundary Conditions and Parities -- 18.4 Geske's Approach to Valuing a Call on a Call -- 18.5 Characteristics of Geske's Call on Call Option -- 18.6 Geske's Call on Call Option Model and Linear Homogeneity -- 18.7 Generalized Compound Option Pricing Model -- 18.8 Installment Options -- 18.9 Recap and Preview -- Appendix 18A Selected Greeks of the Compound Option -- Questions and Problems -- Notes -- Chapter 19 American Call Option Pricing -- 19.1 Closed‐Form American Call Pricing: Roll‐Geske‐Whaley -- 19.2 The Two‐Payment Case -- 19.3 Recap and Preview -- Appendix 19A Numerical Example of the One‐Dividend Model -- Questions and Problems -- Notes -- Chapter 20 American Put Option Pricing -- 20.1 The Nature of the Problem of Pricing an American Put -- 20.2 The American Put as a Series of Compound Options -- 20.3 Recap and Preview -- Questions and Problems -- Notes -- Chapter 21 Min‐Max Option Pricing | |
505 | 8 | |a 21.1 Characteristics of Stulz's Min‐Max Option | |
650 | 0 | 7 | |a Derivat |g Wertpapier |0 (DE-588)4381572-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Preisbildung |0 (DE-588)4047103-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kapitalanlage |0 (DE-588)4073213-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Derivat |g Wertpapier |0 (DE-588)4381572-8 |D s |
689 | 0 | 1 | |a Kapitalanlage |0 (DE-588)4073213-7 |D s |
689 | 0 | 2 | |a Preisbildung |0 (DE-588)4047103-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Chance, Don M. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Brooks, Robert E. |t Foundations of the Pricing of Financial Derivatives |d Newark : John Wiley & Sons, Incorporated,c2024 |z 9781394179657 |
912 | |a ZDB-30-PQE | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035211164 | |
966 | e | |u https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=31093693 |l DE-2070s |p ZDB-30-PQE |q HWR_PDA_PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1814902774162259968 |
---|---|
adam_text | |
any_adam_object | |
author | Brooks, Robert E. |
author_facet | Brooks, Robert E. |
author_role | aut |
author_sort | Brooks, Robert E. |
author_variant | r e b re reb |
building | Verbundindex |
bvnumber | BV049871689 |
classification_rvk | QK 660 QK 800 |
collection | ZDB-30-PQE |
contents | Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction and Overview -- 1.1 Motivation for This Book -- 1.2 What Is a Derivative? -- 1.3 Options Versus Forwards, Futures, and Swaps -- 1.4 Size and Scope of the Financial Derivatives Markets -- 1.5 Outline and Features of the Book -- 1.6 Final Thoughts and Preview -- Questions and Problems -- Notes -- Part I Basic Foundations for Derivative Pricing -- Chapter 2 Boundaries, Limits, and Conditions on Option Prices -- 2.1 Setup, Definitions, and Arbitrage -- 2.2 Absolute Minimum and Maximum Values -- 2.3 The Value of an American Option Relative to the Value of a European Option -- 2.4 The Value of an Option at Expiration -- 2.5 The Lower Bounds of European and American Options and the Optimality of Early Exercise -- 2.6 Differences in Option Values by Exercise Price -- 2.7 The Effect of Differences in Time to Expiration -- 2.8 The Convexity Rule -- 2.9 Put‐Call Parity -- 2.10 The Effect of Interest Rates on Option Prices -- 2.11 The Effect of Volatility on Option Prices -- 2.12 The Building Blocks of European Options -- 2.13 Recap and Preview -- Questions and Problems -- Notes -- Chapter 3 Elementary Review of Mathematics for Finance -- 3.1 Summation Notation -- 3.2 Product Notation -- 3.3 Logarithms and Exponentials -- 3.4 Series Formulas -- 3.5 Calculus Derivatives -- 3.6 Integration -- 3.7 Differential Equations -- 3.8 Recap and Preview -- Questions and Problems -- Notes -- Chapter 4 Elementary Review of Probability for Finance -- 4.1 Marginal, Conditional, and Joint Probabilities -- 4.2 Expectations, Variances, and Covariances of Discrete Random Variables -- 4.3 Continuous Random Variables -- 4.4 Some General Results in Probability Theory -- 4.5 Technical Introduction to Common Probability Distributions Used in Finance -- 4.6 Recap and Preview -- Questions and Problems Notes -- Chapter 5 Financial Applications of Probability Distributions -- 5.1 The Univariate Normal Probability Distribution -- 5.2 Contrasting the Normal with the Lognormal Probability Distribution -- 5.3 Bivariate Normal Probability Distribution -- 5.4 The Bivariate Lognormal Probability Distribution -- 5.5 Recap and Preview -- Appendix 5A An Excel Routine for the Bivariate Normal Probability -- Questions and Problems -- Notes -- Chapter 6 Basic Concepts in Valuing Risky Assets and Derivatives -- 6.1 Valuing Risky Assets -- 6.2 Risk‐Neutral Pricing in Discrete Time -- 6.3 Identical Assets and the Law of One Price -- 6.4 Derivative Contracts -- 6.5 A First Look at Valuing Options -- 6.6 A World of Risk‐Averse and Risk‐Neutral Investors -- 6.7 Pricing Options Under Risk Aversion -- 6.8 Recap and Preview -- Questions and Problems -- Notes -- Part II Discrete Time Derivatives Pricing Theory -- Chapter 7 The Binomial Model -- 7.1 The One‐Period Binomial Model for Calls -- 7.2 The One‐Period Binomial Model for Puts -- 7.3 Arbitraging Price Discrepancies -- 7.4 The Multiperiod Model -- 7.5 American Options and Early Exercise in the Binomial Framework -- 7.6 Dividends and Recombination -- 7.7 Path Independence and Path Dependence -- 7.8 Recap and Preview -- Appendix 7A Derivation of Equation (7.9) -- Appendix 7B Pascal's Triangle and the Binomial Model -- Questions and Problems -- Notes -- Chapter 8 Calculating the Greeks in the Binomial Model -- 8.1 Standard Approach -- 8.2 An Enhanced Method for Estimating Delta and Gamma -- 8.3 Numerical Examples -- 8.4 Dividends -- 8.5 Recap and Preview -- Questions and Problems -- Notes -- Chapter 9 Convergence of the Binomial Model to the Black‐Scholes‐Merton Model -- 9.1 Setting Up the Problem -- 9.2 The Hsia Proof -- 9.3 Put Options -- 9.4 Dividends -- 9.5 Recap and Preview -- Questions and Problems -- Notes Part III Continuous Time Derivatives Pricing Theory -- Chapter 10 The Basics of Brownian Motion and Wiener Processes -- 10.1 Brownian Motion -- 10.2 The Wiener Process -- 10.3 Properties of a Model of Asset Price Fluctuations -- 10.4 Building a Model of Asset Price Fluctuations -- 10.5 Simulating Brownian Motion and Wiener Processes -- 10.6 Formal Statement of Wiener Process Properties -- 10.7 Recap and Preview -- Appendix 10A Simulation of the Wiener Process and the Square of the Wiener Process for Successively Smaller Time Intervals -- Questions and Problems -- Notes -- Chapter 11 Stochastic Calculus and Itô's Lemma -- 11.1 A Result from Basic Calculus -- 11.2 Introducing Stochastic Calculus and Itô's Lemma -- 11.3 Itô's Integral -- 11.4 The Integral Form of Itô's Lemma -- 11.5 Some Additional Cases of Itô's Lemma -- 11.6 Recap and Preview -- Appendix 11A Technical Stochastic Integral Results -- 11A.1 Selected Stochastic Integral Results -- 11A.2 General Linear Theorem -- Questions and Problems -- Notes -- Chapter 12 Properties of the Lognormal and Normal Diffusion Processes for Modeling Assets -- 12.1 A Stochastic Process for the Asset Relative Return -- 12.2 A Stochastic Process for the Asset Price Change -- 12.3 Solving the Stochastic Differential Equation -- 12.4 Solutions to Stochastic Differential Equations Are Not Always the Same as Solutions to Corresponding Ordinary Differential Equations -- 12.5 Finding the Expected Future Asset Price -- 12.6 Geometric Brownian Motion or Arithmetic Brownian Motion? -- 12.7 Recap and Preview -- Questions and Problems -- Notes -- Chapter 13 Deriving the Black‐Scholes‐Merton Model -- 13.1 Derivation of the European Call Option Pricing Formula -- 13.2 The European Put Option Pricing Formula -- 13.3 Deriving the Black‐Scholes‐Merton Model as an Expected Value 13.4 Deriving the Black‐Scholes‐Merton Model as the Solution of a Partial Differential Equation -- 13.5 Decomposing the Black‐Scholes‐Merton Model into Binary Options -- 13.6 Black‐Scholes‐Merton Option Pricing When There Are Dividends -- 13.7 Selected Black‐Scholes‐Merton Model Limiting Results -- 13.8 Computing the Black‐Scholes‐Merton Option Pricing Model Values -- 13.9 Recap and Preview -- Appendix 13.A Deriving the Arithmetic Brownian Motion Option Pricing Model -- Questions and Problems -- Notes -- Chapter 14 The Greeks in the Black‐Scholes‐Merton Model -- 14.1 Delta: The First Derivative with Respect to the Underlying Price -- 14.2 Gamma: The Second Derivative with Respect to the Underlying Price -- 14.3 Theta: The First Derivative with Respect to Time -- 14.4 Verifying the Solution of the Partial Differential Equation -- 14.5 Selected Other Partial Derivatives of the Black‐Scholes‐Merton Model -- 14.6 Partial Derivatives of the Black‐Scholes‐Merton European Put Option Pricing Model -- 14.7 Incorporating Dividends -- 14.8 Greek Sensitivities -- 14.9 Elasticities -- 14.10 Extended Greeks of the Black‐Scholes‐Merton Option Pricing Model -- 14.11 Recap and Preview -- Questions and Problems -- Notes -- Chapter 15 Girsanov's Theorem in Option Pricing -- 15.1 The Martingale Representation Theorem -- 15.2 Introducing the Radon‐Nikodym Derivative by Changing the Drift for a Single Random Variable -- 15.3 A Complete Probability Space -- 15.4 Formal Statement of Girsanov's Theorem -- 15.5 Changing the Drift in a Continuous Time Stochastic Process -- 15.6 Changing the Drift of an Asset Price Process -- 15.7 Recap and Preview -- Questions and Problems -- Notes -- Chapter 16 Connecting Discrete and Continuous Brownian Motions -- 16.1 Brownian Motion in a Discrete World -- 16.2 Moving from a Discrete to a Continuous World 16.3 Changing the Probability Measure with the Radon‐Nikodym Derivative in Discrete Time -- 16.4 The Kolmogorov Equations -- 16.5 Recap and Preview -- Questions and Problems -- Notes -- Part IV Extensions and Generalizations of Derivative Pricing -- Chapter 17 Applying Linear Homogeneity to Option Pricing -- 17.1 Introduction to Exchange Options -- 17.2 Homogeneous Functions -- 17.3 Euler's Rule -- 17.4 Using Linear Homogeneity and Euler's Rule to Derive the Black‐Scholes‐Merton Model -- 17.5 Exchange Option Pricing -- 17.6 Spread Options3 -- 17.7 Forward Start Options -- 17.8 Recap and Preview -- Appendix 17A Linear Homogeneity and the Arithmetic Brownian Motion Model -- Appendix 17B Multivariate Itô's Lemma -- Appendix 17C Greeks of the Exchange Option Model -- Questions and Problems -- Notes -- Chapter 18 Compound Option Pricing -- 18.1 Equity as an Option -- 18.2 Valuing an Option on the Equity as a Compound Option -- 18.3 Compound Option Boundary Conditions and Parities -- 18.4 Geske's Approach to Valuing a Call on a Call -- 18.5 Characteristics of Geske's Call on Call Option -- 18.6 Geske's Call on Call Option Model and Linear Homogeneity -- 18.7 Generalized Compound Option Pricing Model -- 18.8 Installment Options -- 18.9 Recap and Preview -- Appendix 18A Selected Greeks of the Compound Option -- Questions and Problems -- Notes -- Chapter 19 American Call Option Pricing -- 19.1 Closed‐Form American Call Pricing: Roll‐Geske‐Whaley -- 19.2 The Two‐Payment Case -- 19.3 Recap and Preview -- Appendix 19A Numerical Example of the One‐Dividend Model -- Questions and Problems -- Notes -- Chapter 20 American Put Option Pricing -- 20.1 The Nature of the Problem of Pricing an American Put -- 20.2 The American Put as a Series of Compound Options -- 20.3 Recap and Preview -- Questions and Problems -- Notes -- Chapter 21 Min‐Max Option Pricing 21.1 Characteristics of Stulz's Min‐Max Option |
ctrlnum | (ZDB-30-PQE)EBC31093693 (ZDB-30-PAD)EBC31093693 (ZDB-89-EBL)EBL31093693 (OCoLC)1419872061 (DE-599)BVBBV049871689 |
dewey-full | 332.6457 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 332 - Financial economics |
dewey-raw | 332.6457 |
dewey-search | 332.6457 |
dewey-sort | 3332.6457 |
dewey-tens | 330 - Economics |
discipline | Wirtschaftswissenschaften |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV049871689</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240918s2024 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781394179671</subfield><subfield code="9">978-1-394-17967-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC31093693</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC31093693</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL31093693</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1419872061</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049871689</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-2070s</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">332.6457</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QK 660</subfield><subfield code="0">(DE-625)141676:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QK 800</subfield><subfield code="0">(DE-625)141681:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brooks, Robert E.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Foundations of the Pricing of Financial Derivatives</subfield><subfield code="b">Theory and Analysis</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Newark</subfield><subfield code="b">John Wiley & Sons, Incorporated</subfield><subfield code="c">2024</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (621 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Frank J. Fabozzi Series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction and Overview -- 1.1 Motivation for This Book -- 1.2 What Is a Derivative? -- 1.3 Options Versus Forwards, Futures, and Swaps -- 1.4 Size and Scope of the Financial Derivatives Markets -- 1.5 Outline and Features of the Book -- 1.6 Final Thoughts and Preview -- Questions and Problems -- Notes -- Part I Basic Foundations for Derivative Pricing -- Chapter 2 Boundaries, Limits, and Conditions on Option Prices -- 2.1 Setup, Definitions, and Arbitrage -- 2.2 Absolute Minimum and Maximum Values -- 2.3 The Value of an American Option Relative to the Value of a European Option -- 2.4 The Value of an Option at Expiration -- 2.5 The Lower Bounds of European and American Options and the Optimality of Early Exercise -- 2.6 Differences in Option Values by Exercise Price -- 2.7 The Effect of Differences in Time to Expiration -- 2.8 The Convexity Rule -- 2.9 Put‐Call Parity -- 2.10 The Effect of Interest Rates on Option Prices -- 2.11 The Effect of Volatility on Option Prices -- 2.12 The Building Blocks of European Options -- 2.13 Recap and Preview -- Questions and Problems -- Notes -- Chapter 3 Elementary Review of Mathematics for Finance -- 3.1 Summation Notation -- 3.2 Product Notation -- 3.3 Logarithms and Exponentials -- 3.4 Series Formulas -- 3.5 Calculus Derivatives -- 3.6 Integration -- 3.7 Differential Equations -- 3.8 Recap and Preview -- Questions and Problems -- Notes -- Chapter 4 Elementary Review of Probability for Finance -- 4.1 Marginal, Conditional, and Joint Probabilities -- 4.2 Expectations, Variances, and Covariances of Discrete Random Variables -- 4.3 Continuous Random Variables -- 4.4 Some General Results in Probability Theory -- 4.5 Technical Introduction to Common Probability Distributions Used in Finance -- 4.6 Recap and Preview -- Questions and Problems</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Notes -- Chapter 5 Financial Applications of Probability Distributions -- 5.1 The Univariate Normal Probability Distribution -- 5.2 Contrasting the Normal with the Lognormal Probability Distribution -- 5.3 Bivariate Normal Probability Distribution -- 5.4 The Bivariate Lognormal Probability Distribution -- 5.5 Recap and Preview -- Appendix 5A An Excel Routine for the Bivariate Normal Probability -- Questions and Problems -- Notes -- Chapter 6 Basic Concepts in Valuing Risky Assets and Derivatives -- 6.1 Valuing Risky Assets -- 6.2 Risk‐Neutral Pricing in Discrete Time -- 6.3 Identical Assets and the Law of One Price -- 6.4 Derivative Contracts -- 6.5 A First Look at Valuing Options -- 6.6 A World of Risk‐Averse and Risk‐Neutral Investors -- 6.7 Pricing Options Under Risk Aversion -- 6.8 Recap and Preview -- Questions and Problems -- Notes -- Part II Discrete Time Derivatives Pricing Theory -- Chapter 7 The Binomial Model -- 7.1 The One‐Period Binomial Model for Calls -- 7.2 The One‐Period Binomial Model for Puts -- 7.3 Arbitraging Price Discrepancies -- 7.4 The Multiperiod Model -- 7.5 American Options and Early Exercise in the Binomial Framework -- 7.6 Dividends and Recombination -- 7.7 Path Independence and Path Dependence -- 7.8 Recap and Preview -- Appendix 7A Derivation of Equation (7.9) -- Appendix 7B Pascal's Triangle and the Binomial Model -- Questions and Problems -- Notes -- Chapter 8 Calculating the Greeks in the Binomial Model -- 8.1 Standard Approach -- 8.2 An Enhanced Method for Estimating Delta and Gamma -- 8.3 Numerical Examples -- 8.4 Dividends -- 8.5 Recap and Preview -- Questions and Problems -- Notes -- Chapter 9 Convergence of the Binomial Model to the Black‐Scholes‐Merton Model -- 9.1 Setting Up the Problem -- 9.2 The Hsia Proof -- 9.3 Put Options -- 9.4 Dividends -- 9.5 Recap and Preview -- Questions and Problems -- Notes</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Part III Continuous Time Derivatives Pricing Theory -- Chapter 10 The Basics of Brownian Motion and Wiener Processes -- 10.1 Brownian Motion -- 10.2 The Wiener Process -- 10.3 Properties of a Model of Asset Price Fluctuations -- 10.4 Building a Model of Asset Price Fluctuations -- 10.5 Simulating Brownian Motion and Wiener Processes -- 10.6 Formal Statement of Wiener Process Properties -- 10.7 Recap and Preview -- Appendix 10A Simulation of the Wiener Process and the Square of the Wiener Process for Successively Smaller Time Intervals -- Questions and Problems -- Notes -- Chapter 11 Stochastic Calculus and Itô's Lemma -- 11.1 A Result from Basic Calculus -- 11.2 Introducing Stochastic Calculus and Itô's Lemma -- 11.3 Itô's Integral -- 11.4 The Integral Form of Itô's Lemma -- 11.5 Some Additional Cases of Itô's Lemma -- 11.6 Recap and Preview -- Appendix 11A Technical Stochastic Integral Results -- 11A.1 Selected Stochastic Integral Results -- 11A.2 General Linear Theorem -- Questions and Problems -- Notes -- Chapter 12 Properties of the Lognormal and Normal Diffusion Processes for Modeling Assets -- 12.1 A Stochastic Process for the Asset Relative Return -- 12.2 A Stochastic Process for the Asset Price Change -- 12.3 Solving the Stochastic Differential Equation -- 12.4 Solutions to Stochastic Differential Equations Are Not Always the Same as Solutions to Corresponding Ordinary Differential Equations -- 12.5 Finding the Expected Future Asset Price -- 12.6 Geometric Brownian Motion or Arithmetic Brownian Motion? -- 12.7 Recap and Preview -- Questions and Problems -- Notes -- Chapter 13 Deriving the Black‐Scholes‐Merton Model -- 13.1 Derivation of the European Call Option Pricing Formula -- 13.2 The European Put Option Pricing Formula -- 13.3 Deriving the Black‐Scholes‐Merton Model as an Expected Value</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">13.4 Deriving the Black‐Scholes‐Merton Model as the Solution of a Partial Differential Equation -- 13.5 Decomposing the Black‐Scholes‐Merton Model into Binary Options -- 13.6 Black‐Scholes‐Merton Option Pricing When There Are Dividends -- 13.7 Selected Black‐Scholes‐Merton Model Limiting Results -- 13.8 Computing the Black‐Scholes‐Merton Option Pricing Model Values -- 13.9 Recap and Preview -- Appendix 13.A Deriving the Arithmetic Brownian Motion Option Pricing Model -- Questions and Problems -- Notes -- Chapter 14 The Greeks in the Black‐Scholes‐Merton Model -- 14.1 Delta: The First Derivative with Respect to the Underlying Price -- 14.2 Gamma: The Second Derivative with Respect to the Underlying Price -- 14.3 Theta: The First Derivative with Respect to Time -- 14.4 Verifying the Solution of the Partial Differential Equation -- 14.5 Selected Other Partial Derivatives of the Black‐Scholes‐Merton Model -- 14.6 Partial Derivatives of the Black‐Scholes‐Merton European Put Option Pricing Model -- 14.7 Incorporating Dividends -- 14.8 Greek Sensitivities -- 14.9 Elasticities -- 14.10 Extended Greeks of the Black‐Scholes‐Merton Option Pricing Model -- 14.11 Recap and Preview -- Questions and Problems -- Notes -- Chapter 15 Girsanov's Theorem in Option Pricing -- 15.1 The Martingale Representation Theorem -- 15.2 Introducing the Radon‐Nikodym Derivative by Changing the Drift for a Single Random Variable -- 15.3 A Complete Probability Space -- 15.4 Formal Statement of Girsanov's Theorem -- 15.5 Changing the Drift in a Continuous Time Stochastic Process -- 15.6 Changing the Drift of an Asset Price Process -- 15.7 Recap and Preview -- Questions and Problems -- Notes -- Chapter 16 Connecting Discrete and Continuous Brownian Motions -- 16.1 Brownian Motion in a Discrete World -- 16.2 Moving from a Discrete to a Continuous World</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">16.3 Changing the Probability Measure with the Radon‐Nikodym Derivative in Discrete Time -- 16.4 The Kolmogorov Equations -- 16.5 Recap and Preview -- Questions and Problems -- Notes -- Part IV Extensions and Generalizations of Derivative Pricing -- Chapter 17 Applying Linear Homogeneity to Option Pricing -- 17.1 Introduction to Exchange Options -- 17.2 Homogeneous Functions -- 17.3 Euler's Rule -- 17.4 Using Linear Homogeneity and Euler's Rule to Derive the Black‐Scholes‐Merton Model -- 17.5 Exchange Option Pricing -- 17.6 Spread Options3 -- 17.7 Forward Start Options -- 17.8 Recap and Preview -- Appendix 17A Linear Homogeneity and the Arithmetic Brownian Motion Model -- Appendix 17B Multivariate Itô's Lemma -- Appendix 17C Greeks of the Exchange Option Model -- Questions and Problems -- Notes -- Chapter 18 Compound Option Pricing -- 18.1 Equity as an Option -- 18.2 Valuing an Option on the Equity as a Compound Option -- 18.3 Compound Option Boundary Conditions and Parities -- 18.4 Geske's Approach to Valuing a Call on a Call -- 18.5 Characteristics of Geske's Call on Call Option -- 18.6 Geske's Call on Call Option Model and Linear Homogeneity -- 18.7 Generalized Compound Option Pricing Model -- 18.8 Installment Options -- 18.9 Recap and Preview -- Appendix 18A Selected Greeks of the Compound Option -- Questions and Problems -- Notes -- Chapter 19 American Call Option Pricing -- 19.1 Closed‐Form American Call Pricing: Roll‐Geske‐Whaley -- 19.2 The Two‐Payment Case -- 19.3 Recap and Preview -- Appendix 19A Numerical Example of the One‐Dividend Model -- Questions and Problems -- Notes -- Chapter 20 American Put Option Pricing -- 20.1 The Nature of the Problem of Pricing an American Put -- 20.2 The American Put as a Series of Compound Options -- 20.3 Recap and Preview -- Questions and Problems -- Notes -- Chapter 21 Min‐Max Option Pricing</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">21.1 Characteristics of Stulz's Min‐Max Option</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Derivat</subfield><subfield code="g">Wertpapier</subfield><subfield code="0">(DE-588)4381572-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Preisbildung</subfield><subfield code="0">(DE-588)4047103-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kapitalanlage</subfield><subfield code="0">(DE-588)4073213-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Derivat</subfield><subfield code="g">Wertpapier</subfield><subfield code="0">(DE-588)4381572-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kapitalanlage</subfield><subfield code="0">(DE-588)4073213-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Preisbildung</subfield><subfield code="0">(DE-588)4047103-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chance, Don M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Brooks, Robert E.</subfield><subfield code="t">Foundations of the Pricing of Financial Derivatives</subfield><subfield code="d">Newark : John Wiley & Sons, Incorporated,c2024</subfield><subfield code="z">9781394179657</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035211164</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/hwr/detail.action?docID=31093693</subfield><subfield code="l">DE-2070s</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">HWR_PDA_PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049871689 |
illustrated | Not Illustrated |
indexdate | 2024-11-05T17:02:42Z |
institution | BVB |
isbn | 9781394179671 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035211164 |
oclc_num | 1419872061 |
open_access_boolean | |
owner | DE-2070s |
owner_facet | DE-2070s |
physical | 1 Online-Ressource (621 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE HWR_PDA_PQE |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | John Wiley & Sons, Incorporated |
record_format | marc |
series2 | Frank J. Fabozzi Series |
spelling | Brooks, Robert E. Verfasser aut Foundations of the Pricing of Financial Derivatives Theory and Analysis 1st ed Newark John Wiley & Sons, Incorporated 2024 ©2024 1 Online-Ressource (621 Seiten) txt rdacontent c rdamedia cr rdacarrier Frank J. Fabozzi Series Description based on publisher supplied metadata and other sources Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction and Overview -- 1.1 Motivation for This Book -- 1.2 What Is a Derivative? -- 1.3 Options Versus Forwards, Futures, and Swaps -- 1.4 Size and Scope of the Financial Derivatives Markets -- 1.5 Outline and Features of the Book -- 1.6 Final Thoughts and Preview -- Questions and Problems -- Notes -- Part I Basic Foundations for Derivative Pricing -- Chapter 2 Boundaries, Limits, and Conditions on Option Prices -- 2.1 Setup, Definitions, and Arbitrage -- 2.2 Absolute Minimum and Maximum Values -- 2.3 The Value of an American Option Relative to the Value of a European Option -- 2.4 The Value of an Option at Expiration -- 2.5 The Lower Bounds of European and American Options and the Optimality of Early Exercise -- 2.6 Differences in Option Values by Exercise Price -- 2.7 The Effect of Differences in Time to Expiration -- 2.8 The Convexity Rule -- 2.9 Put‐Call Parity -- 2.10 The Effect of Interest Rates on Option Prices -- 2.11 The Effect of Volatility on Option Prices -- 2.12 The Building Blocks of European Options -- 2.13 Recap and Preview -- Questions and Problems -- Notes -- Chapter 3 Elementary Review of Mathematics for Finance -- 3.1 Summation Notation -- 3.2 Product Notation -- 3.3 Logarithms and Exponentials -- 3.4 Series Formulas -- 3.5 Calculus Derivatives -- 3.6 Integration -- 3.7 Differential Equations -- 3.8 Recap and Preview -- Questions and Problems -- Notes -- Chapter 4 Elementary Review of Probability for Finance -- 4.1 Marginal, Conditional, and Joint Probabilities -- 4.2 Expectations, Variances, and Covariances of Discrete Random Variables -- 4.3 Continuous Random Variables -- 4.4 Some General Results in Probability Theory -- 4.5 Technical Introduction to Common Probability Distributions Used in Finance -- 4.6 Recap and Preview -- Questions and Problems Notes -- Chapter 5 Financial Applications of Probability Distributions -- 5.1 The Univariate Normal Probability Distribution -- 5.2 Contrasting the Normal with the Lognormal Probability Distribution -- 5.3 Bivariate Normal Probability Distribution -- 5.4 The Bivariate Lognormal Probability Distribution -- 5.5 Recap and Preview -- Appendix 5A An Excel Routine for the Bivariate Normal Probability -- Questions and Problems -- Notes -- Chapter 6 Basic Concepts in Valuing Risky Assets and Derivatives -- 6.1 Valuing Risky Assets -- 6.2 Risk‐Neutral Pricing in Discrete Time -- 6.3 Identical Assets and the Law of One Price -- 6.4 Derivative Contracts -- 6.5 A First Look at Valuing Options -- 6.6 A World of Risk‐Averse and Risk‐Neutral Investors -- 6.7 Pricing Options Under Risk Aversion -- 6.8 Recap and Preview -- Questions and Problems -- Notes -- Part II Discrete Time Derivatives Pricing Theory -- Chapter 7 The Binomial Model -- 7.1 The One‐Period Binomial Model for Calls -- 7.2 The One‐Period Binomial Model for Puts -- 7.3 Arbitraging Price Discrepancies -- 7.4 The Multiperiod Model -- 7.5 American Options and Early Exercise in the Binomial Framework -- 7.6 Dividends and Recombination -- 7.7 Path Independence and Path Dependence -- 7.8 Recap and Preview -- Appendix 7A Derivation of Equation (7.9) -- Appendix 7B Pascal's Triangle and the Binomial Model -- Questions and Problems -- Notes -- Chapter 8 Calculating the Greeks in the Binomial Model -- 8.1 Standard Approach -- 8.2 An Enhanced Method for Estimating Delta and Gamma -- 8.3 Numerical Examples -- 8.4 Dividends -- 8.5 Recap and Preview -- Questions and Problems -- Notes -- Chapter 9 Convergence of the Binomial Model to the Black‐Scholes‐Merton Model -- 9.1 Setting Up the Problem -- 9.2 The Hsia Proof -- 9.3 Put Options -- 9.4 Dividends -- 9.5 Recap and Preview -- Questions and Problems -- Notes Part III Continuous Time Derivatives Pricing Theory -- Chapter 10 The Basics of Brownian Motion and Wiener Processes -- 10.1 Brownian Motion -- 10.2 The Wiener Process -- 10.3 Properties of a Model of Asset Price Fluctuations -- 10.4 Building a Model of Asset Price Fluctuations -- 10.5 Simulating Brownian Motion and Wiener Processes -- 10.6 Formal Statement of Wiener Process Properties -- 10.7 Recap and Preview -- Appendix 10A Simulation of the Wiener Process and the Square of the Wiener Process for Successively Smaller Time Intervals -- Questions and Problems -- Notes -- Chapter 11 Stochastic Calculus and Itô's Lemma -- 11.1 A Result from Basic Calculus -- 11.2 Introducing Stochastic Calculus and Itô's Lemma -- 11.3 Itô's Integral -- 11.4 The Integral Form of Itô's Lemma -- 11.5 Some Additional Cases of Itô's Lemma -- 11.6 Recap and Preview -- Appendix 11A Technical Stochastic Integral Results -- 11A.1 Selected Stochastic Integral Results -- 11A.2 General Linear Theorem -- Questions and Problems -- Notes -- Chapter 12 Properties of the Lognormal and Normal Diffusion Processes for Modeling Assets -- 12.1 A Stochastic Process for the Asset Relative Return -- 12.2 A Stochastic Process for the Asset Price Change -- 12.3 Solving the Stochastic Differential Equation -- 12.4 Solutions to Stochastic Differential Equations Are Not Always the Same as Solutions to Corresponding Ordinary Differential Equations -- 12.5 Finding the Expected Future Asset Price -- 12.6 Geometric Brownian Motion or Arithmetic Brownian Motion? -- 12.7 Recap and Preview -- Questions and Problems -- Notes -- Chapter 13 Deriving the Black‐Scholes‐Merton Model -- 13.1 Derivation of the European Call Option Pricing Formula -- 13.2 The European Put Option Pricing Formula -- 13.3 Deriving the Black‐Scholes‐Merton Model as an Expected Value 13.4 Deriving the Black‐Scholes‐Merton Model as the Solution of a Partial Differential Equation -- 13.5 Decomposing the Black‐Scholes‐Merton Model into Binary Options -- 13.6 Black‐Scholes‐Merton Option Pricing When There Are Dividends -- 13.7 Selected Black‐Scholes‐Merton Model Limiting Results -- 13.8 Computing the Black‐Scholes‐Merton Option Pricing Model Values -- 13.9 Recap and Preview -- Appendix 13.A Deriving the Arithmetic Brownian Motion Option Pricing Model -- Questions and Problems -- Notes -- Chapter 14 The Greeks in the Black‐Scholes‐Merton Model -- 14.1 Delta: The First Derivative with Respect to the Underlying Price -- 14.2 Gamma: The Second Derivative with Respect to the Underlying Price -- 14.3 Theta: The First Derivative with Respect to Time -- 14.4 Verifying the Solution of the Partial Differential Equation -- 14.5 Selected Other Partial Derivatives of the Black‐Scholes‐Merton Model -- 14.6 Partial Derivatives of the Black‐Scholes‐Merton European Put Option Pricing Model -- 14.7 Incorporating Dividends -- 14.8 Greek Sensitivities -- 14.9 Elasticities -- 14.10 Extended Greeks of the Black‐Scholes‐Merton Option Pricing Model -- 14.11 Recap and Preview -- Questions and Problems -- Notes -- Chapter 15 Girsanov's Theorem in Option Pricing -- 15.1 The Martingale Representation Theorem -- 15.2 Introducing the Radon‐Nikodym Derivative by Changing the Drift for a Single Random Variable -- 15.3 A Complete Probability Space -- 15.4 Formal Statement of Girsanov's Theorem -- 15.5 Changing the Drift in a Continuous Time Stochastic Process -- 15.6 Changing the Drift of an Asset Price Process -- 15.7 Recap and Preview -- Questions and Problems -- Notes -- Chapter 16 Connecting Discrete and Continuous Brownian Motions -- 16.1 Brownian Motion in a Discrete World -- 16.2 Moving from a Discrete to a Continuous World 16.3 Changing the Probability Measure with the Radon‐Nikodym Derivative in Discrete Time -- 16.4 The Kolmogorov Equations -- 16.5 Recap and Preview -- Questions and Problems -- Notes -- Part IV Extensions and Generalizations of Derivative Pricing -- Chapter 17 Applying Linear Homogeneity to Option Pricing -- 17.1 Introduction to Exchange Options -- 17.2 Homogeneous Functions -- 17.3 Euler's Rule -- 17.4 Using Linear Homogeneity and Euler's Rule to Derive the Black‐Scholes‐Merton Model -- 17.5 Exchange Option Pricing -- 17.6 Spread Options3 -- 17.7 Forward Start Options -- 17.8 Recap and Preview -- Appendix 17A Linear Homogeneity and the Arithmetic Brownian Motion Model -- Appendix 17B Multivariate Itô's Lemma -- Appendix 17C Greeks of the Exchange Option Model -- Questions and Problems -- Notes -- Chapter 18 Compound Option Pricing -- 18.1 Equity as an Option -- 18.2 Valuing an Option on the Equity as a Compound Option -- 18.3 Compound Option Boundary Conditions and Parities -- 18.4 Geske's Approach to Valuing a Call on a Call -- 18.5 Characteristics of Geske's Call on Call Option -- 18.6 Geske's Call on Call Option Model and Linear Homogeneity -- 18.7 Generalized Compound Option Pricing Model -- 18.8 Installment Options -- 18.9 Recap and Preview -- Appendix 18A Selected Greeks of the Compound Option -- Questions and Problems -- Notes -- Chapter 19 American Call Option Pricing -- 19.1 Closed‐Form American Call Pricing: Roll‐Geske‐Whaley -- 19.2 The Two‐Payment Case -- 19.3 Recap and Preview -- Appendix 19A Numerical Example of the One‐Dividend Model -- Questions and Problems -- Notes -- Chapter 20 American Put Option Pricing -- 20.1 The Nature of the Problem of Pricing an American Put -- 20.2 The American Put as a Series of Compound Options -- 20.3 Recap and Preview -- Questions and Problems -- Notes -- Chapter 21 Min‐Max Option Pricing 21.1 Characteristics of Stulz's Min‐Max Option Derivat Wertpapier (DE-588)4381572-8 gnd rswk-swf Preisbildung (DE-588)4047103-2 gnd rswk-swf Kapitalanlage (DE-588)4073213-7 gnd rswk-swf Derivat Wertpapier (DE-588)4381572-8 s Kapitalanlage (DE-588)4073213-7 s Preisbildung (DE-588)4047103-2 s DE-604 Chance, Don M. Sonstige oth Erscheint auch als Druck-Ausgabe Brooks, Robert E. Foundations of the Pricing of Financial Derivatives Newark : John Wiley & Sons, Incorporated,c2024 9781394179657 |
spellingShingle | Brooks, Robert E. Foundations of the Pricing of Financial Derivatives Theory and Analysis Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction and Overview -- 1.1 Motivation for This Book -- 1.2 What Is a Derivative? -- 1.3 Options Versus Forwards, Futures, and Swaps -- 1.4 Size and Scope of the Financial Derivatives Markets -- 1.5 Outline and Features of the Book -- 1.6 Final Thoughts and Preview -- Questions and Problems -- Notes -- Part I Basic Foundations for Derivative Pricing -- Chapter 2 Boundaries, Limits, and Conditions on Option Prices -- 2.1 Setup, Definitions, and Arbitrage -- 2.2 Absolute Minimum and Maximum Values -- 2.3 The Value of an American Option Relative to the Value of a European Option -- 2.4 The Value of an Option at Expiration -- 2.5 The Lower Bounds of European and American Options and the Optimality of Early Exercise -- 2.6 Differences in Option Values by Exercise Price -- 2.7 The Effect of Differences in Time to Expiration -- 2.8 The Convexity Rule -- 2.9 Put‐Call Parity -- 2.10 The Effect of Interest Rates on Option Prices -- 2.11 The Effect of Volatility on Option Prices -- 2.12 The Building Blocks of European Options -- 2.13 Recap and Preview -- Questions and Problems -- Notes -- Chapter 3 Elementary Review of Mathematics for Finance -- 3.1 Summation Notation -- 3.2 Product Notation -- 3.3 Logarithms and Exponentials -- 3.4 Series Formulas -- 3.5 Calculus Derivatives -- 3.6 Integration -- 3.7 Differential Equations -- 3.8 Recap and Preview -- Questions and Problems -- Notes -- Chapter 4 Elementary Review of Probability for Finance -- 4.1 Marginal, Conditional, and Joint Probabilities -- 4.2 Expectations, Variances, and Covariances of Discrete Random Variables -- 4.3 Continuous Random Variables -- 4.4 Some General Results in Probability Theory -- 4.5 Technical Introduction to Common Probability Distributions Used in Finance -- 4.6 Recap and Preview -- Questions and Problems Notes -- Chapter 5 Financial Applications of Probability Distributions -- 5.1 The Univariate Normal Probability Distribution -- 5.2 Contrasting the Normal with the Lognormal Probability Distribution -- 5.3 Bivariate Normal Probability Distribution -- 5.4 The Bivariate Lognormal Probability Distribution -- 5.5 Recap and Preview -- Appendix 5A An Excel Routine for the Bivariate Normal Probability -- Questions and Problems -- Notes -- Chapter 6 Basic Concepts in Valuing Risky Assets and Derivatives -- 6.1 Valuing Risky Assets -- 6.2 Risk‐Neutral Pricing in Discrete Time -- 6.3 Identical Assets and the Law of One Price -- 6.4 Derivative Contracts -- 6.5 A First Look at Valuing Options -- 6.6 A World of Risk‐Averse and Risk‐Neutral Investors -- 6.7 Pricing Options Under Risk Aversion -- 6.8 Recap and Preview -- Questions and Problems -- Notes -- Part II Discrete Time Derivatives Pricing Theory -- Chapter 7 The Binomial Model -- 7.1 The One‐Period Binomial Model for Calls -- 7.2 The One‐Period Binomial Model for Puts -- 7.3 Arbitraging Price Discrepancies -- 7.4 The Multiperiod Model -- 7.5 American Options and Early Exercise in the Binomial Framework -- 7.6 Dividends and Recombination -- 7.7 Path Independence and Path Dependence -- 7.8 Recap and Preview -- Appendix 7A Derivation of Equation (7.9) -- Appendix 7B Pascal's Triangle and the Binomial Model -- Questions and Problems -- Notes -- Chapter 8 Calculating the Greeks in the Binomial Model -- 8.1 Standard Approach -- 8.2 An Enhanced Method for Estimating Delta and Gamma -- 8.3 Numerical Examples -- 8.4 Dividends -- 8.5 Recap and Preview -- Questions and Problems -- Notes -- Chapter 9 Convergence of the Binomial Model to the Black‐Scholes‐Merton Model -- 9.1 Setting Up the Problem -- 9.2 The Hsia Proof -- 9.3 Put Options -- 9.4 Dividends -- 9.5 Recap and Preview -- Questions and Problems -- Notes Part III Continuous Time Derivatives Pricing Theory -- Chapter 10 The Basics of Brownian Motion and Wiener Processes -- 10.1 Brownian Motion -- 10.2 The Wiener Process -- 10.3 Properties of a Model of Asset Price Fluctuations -- 10.4 Building a Model of Asset Price Fluctuations -- 10.5 Simulating Brownian Motion and Wiener Processes -- 10.6 Formal Statement of Wiener Process Properties -- 10.7 Recap and Preview -- Appendix 10A Simulation of the Wiener Process and the Square of the Wiener Process for Successively Smaller Time Intervals -- Questions and Problems -- Notes -- Chapter 11 Stochastic Calculus and Itô's Lemma -- 11.1 A Result from Basic Calculus -- 11.2 Introducing Stochastic Calculus and Itô's Lemma -- 11.3 Itô's Integral -- 11.4 The Integral Form of Itô's Lemma -- 11.5 Some Additional Cases of Itô's Lemma -- 11.6 Recap and Preview -- Appendix 11A Technical Stochastic Integral Results -- 11A.1 Selected Stochastic Integral Results -- 11A.2 General Linear Theorem -- Questions and Problems -- Notes -- Chapter 12 Properties of the Lognormal and Normal Diffusion Processes for Modeling Assets -- 12.1 A Stochastic Process for the Asset Relative Return -- 12.2 A Stochastic Process for the Asset Price Change -- 12.3 Solving the Stochastic Differential Equation -- 12.4 Solutions to Stochastic Differential Equations Are Not Always the Same as Solutions to Corresponding Ordinary Differential Equations -- 12.5 Finding the Expected Future Asset Price -- 12.6 Geometric Brownian Motion or Arithmetic Brownian Motion? -- 12.7 Recap and Preview -- Questions and Problems -- Notes -- Chapter 13 Deriving the Black‐Scholes‐Merton Model -- 13.1 Derivation of the European Call Option Pricing Formula -- 13.2 The European Put Option Pricing Formula -- 13.3 Deriving the Black‐Scholes‐Merton Model as an Expected Value 13.4 Deriving the Black‐Scholes‐Merton Model as the Solution of a Partial Differential Equation -- 13.5 Decomposing the Black‐Scholes‐Merton Model into Binary Options -- 13.6 Black‐Scholes‐Merton Option Pricing When There Are Dividends -- 13.7 Selected Black‐Scholes‐Merton Model Limiting Results -- 13.8 Computing the Black‐Scholes‐Merton Option Pricing Model Values -- 13.9 Recap and Preview -- Appendix 13.A Deriving the Arithmetic Brownian Motion Option Pricing Model -- Questions and Problems -- Notes -- Chapter 14 The Greeks in the Black‐Scholes‐Merton Model -- 14.1 Delta: The First Derivative with Respect to the Underlying Price -- 14.2 Gamma: The Second Derivative with Respect to the Underlying Price -- 14.3 Theta: The First Derivative with Respect to Time -- 14.4 Verifying the Solution of the Partial Differential Equation -- 14.5 Selected Other Partial Derivatives of the Black‐Scholes‐Merton Model -- 14.6 Partial Derivatives of the Black‐Scholes‐Merton European Put Option Pricing Model -- 14.7 Incorporating Dividends -- 14.8 Greek Sensitivities -- 14.9 Elasticities -- 14.10 Extended Greeks of the Black‐Scholes‐Merton Option Pricing Model -- 14.11 Recap and Preview -- Questions and Problems -- Notes -- Chapter 15 Girsanov's Theorem in Option Pricing -- 15.1 The Martingale Representation Theorem -- 15.2 Introducing the Radon‐Nikodym Derivative by Changing the Drift for a Single Random Variable -- 15.3 A Complete Probability Space -- 15.4 Formal Statement of Girsanov's Theorem -- 15.5 Changing the Drift in a Continuous Time Stochastic Process -- 15.6 Changing the Drift of an Asset Price Process -- 15.7 Recap and Preview -- Questions and Problems -- Notes -- Chapter 16 Connecting Discrete and Continuous Brownian Motions -- 16.1 Brownian Motion in a Discrete World -- 16.2 Moving from a Discrete to a Continuous World 16.3 Changing the Probability Measure with the Radon‐Nikodym Derivative in Discrete Time -- 16.4 The Kolmogorov Equations -- 16.5 Recap and Preview -- Questions and Problems -- Notes -- Part IV Extensions and Generalizations of Derivative Pricing -- Chapter 17 Applying Linear Homogeneity to Option Pricing -- 17.1 Introduction to Exchange Options -- 17.2 Homogeneous Functions -- 17.3 Euler's Rule -- 17.4 Using Linear Homogeneity and Euler's Rule to Derive the Black‐Scholes‐Merton Model -- 17.5 Exchange Option Pricing -- 17.6 Spread Options3 -- 17.7 Forward Start Options -- 17.8 Recap and Preview -- Appendix 17A Linear Homogeneity and the Arithmetic Brownian Motion Model -- Appendix 17B Multivariate Itô's Lemma -- Appendix 17C Greeks of the Exchange Option Model -- Questions and Problems -- Notes -- Chapter 18 Compound Option Pricing -- 18.1 Equity as an Option -- 18.2 Valuing an Option on the Equity as a Compound Option -- 18.3 Compound Option Boundary Conditions and Parities -- 18.4 Geske's Approach to Valuing a Call on a Call -- 18.5 Characteristics of Geske's Call on Call Option -- 18.6 Geske's Call on Call Option Model and Linear Homogeneity -- 18.7 Generalized Compound Option Pricing Model -- 18.8 Installment Options -- 18.9 Recap and Preview -- Appendix 18A Selected Greeks of the Compound Option -- Questions and Problems -- Notes -- Chapter 19 American Call Option Pricing -- 19.1 Closed‐Form American Call Pricing: Roll‐Geske‐Whaley -- 19.2 The Two‐Payment Case -- 19.3 Recap and Preview -- Appendix 19A Numerical Example of the One‐Dividend Model -- Questions and Problems -- Notes -- Chapter 20 American Put Option Pricing -- 20.1 The Nature of the Problem of Pricing an American Put -- 20.2 The American Put as a Series of Compound Options -- 20.3 Recap and Preview -- Questions and Problems -- Notes -- Chapter 21 Min‐Max Option Pricing 21.1 Characteristics of Stulz's Min‐Max Option Derivat Wertpapier (DE-588)4381572-8 gnd Preisbildung (DE-588)4047103-2 gnd Kapitalanlage (DE-588)4073213-7 gnd |
subject_GND | (DE-588)4381572-8 (DE-588)4047103-2 (DE-588)4073213-7 |
title | Foundations of the Pricing of Financial Derivatives Theory and Analysis |
title_auth | Foundations of the Pricing of Financial Derivatives Theory and Analysis |
title_exact_search | Foundations of the Pricing of Financial Derivatives Theory and Analysis |
title_full | Foundations of the Pricing of Financial Derivatives Theory and Analysis |
title_fullStr | Foundations of the Pricing of Financial Derivatives Theory and Analysis |
title_full_unstemmed | Foundations of the Pricing of Financial Derivatives Theory and Analysis |
title_short | Foundations of the Pricing of Financial Derivatives |
title_sort | foundations of the pricing of financial derivatives theory and analysis |
title_sub | Theory and Analysis |
topic | Derivat Wertpapier (DE-588)4381572-8 gnd Preisbildung (DE-588)4047103-2 gnd Kapitalanlage (DE-588)4073213-7 gnd |
topic_facet | Derivat Wertpapier Preisbildung Kapitalanlage |
work_keys_str_mv | AT brooksroberte foundationsofthepricingoffinancialderivativestheoryandanalysis AT chancedonm foundationsofthepricingoffinancialderivativestheoryandanalysis |