Higher special functions: a theory of the central two-point connection problem based on a singularity approach
Higher special functions emerge from boundary eigenvalue problems of Fuchsian differential equations with more than three singularities. This detailed reference provides solutions for singular boundary eigenvalue problems of linear ordinary differential equations of second order, exploring previousl...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2024
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
188 |
Schlagworte: | |
Online-Zugang: | DE-12 DE-634 DE-92 Volltext |
Zusammenfassung: | Higher special functions emerge from boundary eigenvalue problems of Fuchsian differential equations with more than three singularities. This detailed reference provides solutions for singular boundary eigenvalue problems of linear ordinary differential equations of second order, exploring previously unknown methods for finding higher special functions. Starting from the fact that it is the singularities of a differential equation that determine the local, as well as the global, behaviour of its solutions, the author develops methods that are both new and efficient and lead to functional relationships that were previously unknown. All the developments discussed are placed within their historical context, allowing the reader to trace the roots of the theory back through the work of many generations of great mathematicians. Particular attention is given to the work of George Cecil Jaffé, who laid the foundation with the calculation of the quantum mechanical energy levels of the hydrogen molecule ion |
Beschreibung: | Title from publisher's bibliographic system (viewed on 16 May 2024) |
Beschreibung: | 1 Online-Ressource (xiv, 300 Seiten) |
ISBN: | 9781009128414 |
DOI: | 10.1017/9781009128414 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV049868455 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 240916s2024 |||| o||u| ||||||eng d | ||
020 | |a 9781009128414 |c Online |9 978-1-009-12841-4 | ||
024 | 7 | |a 10.1017/9781009128414 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781009128414 | ||
035 | |a (OCoLC)1456135940 | ||
035 | |a (DE-599)BVBBV049868455 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-634 | ||
082 | 0 | |a 515.35 | |
100 | 1 | |a Lay, Wolfgang |d ca. 20./21. Jh. |0 (DE-588)1236355687 |4 aut | |
245 | 1 | 0 | |a Higher special functions |b a theory of the central two-point connection problem based on a singularity approach |c Wolfgang Lay |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2024 | |
300 | |a 1 Online-Ressource (xiv, 300 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Encyclopedia of mathematics and its applications |v 188 | |
500 | |a Title from publisher's bibliographic system (viewed on 16 May 2024) | ||
520 | |a Higher special functions emerge from boundary eigenvalue problems of Fuchsian differential equations with more than three singularities. This detailed reference provides solutions for singular boundary eigenvalue problems of linear ordinary differential equations of second order, exploring previously unknown methods for finding higher special functions. Starting from the fact that it is the singularities of a differential equation that determine the local, as well as the global, behaviour of its solutions, the author develops methods that are both new and efficient and lead to functional relationships that were previously unknown. All the developments discussed are placed within their historical context, allowing the reader to trace the roots of the theory back through the work of many generations of great mathematicians. Particular attention is given to the work of George Cecil Jaffé, who laid the foundation with the calculation of the quantum mechanical energy levels of the hydrogen molecule ion | ||
600 | 1 | 4 | |a Jaffé, George / 1880-1965 |
650 | 4 | |a Differential equations / Asymptotic theory | |
650 | 4 | |a Transformations (Mathematics) | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781009123198 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781009128414?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035207984 | |
966 | e | |u https://doi.org/10.1017/9781009128414?locatt=mode:legacy |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009128414?locatt=mode:legacy |l DE-634 |p ZDB-20-CBO |q BTU_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009128414?locatt=mode:legacy |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1812974122471260160 |
---|---|
adam_text | |
any_adam_object | |
author | Lay, Wolfgang ca. 20./21. Jh |
author_GND | (DE-588)1236355687 |
author_facet | Lay, Wolfgang ca. 20./21. Jh |
author_role | aut |
author_sort | Lay, Wolfgang ca. 20./21. Jh |
author_variant | w l wl |
building | Verbundindex |
bvnumber | BV049868455 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781009128414 (OCoLC)1456135940 (DE-599)BVBBV049868455 |
dewey-full | 515.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.35 |
dewey-search | 515.35 |
dewey-sort | 3515.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1017/9781009128414 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zcb4500</leader><controlfield tag="001">BV049868455</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240916s2024 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009128414</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-009-12841-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781009128414</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781009128414</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1456135940</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049868455</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.35</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lay, Wolfgang</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1236355687</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Higher special functions</subfield><subfield code="b">a theory of the central two-point connection problem based on a singularity approach</subfield><subfield code="c">Wolfgang Lay</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 300 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">188</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 16 May 2024)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Higher special functions emerge from boundary eigenvalue problems of Fuchsian differential equations with more than three singularities. This detailed reference provides solutions for singular boundary eigenvalue problems of linear ordinary differential equations of second order, exploring previously unknown methods for finding higher special functions. Starting from the fact that it is the singularities of a differential equation that determine the local, as well as the global, behaviour of its solutions, the author develops methods that are both new and efficient and lead to functional relationships that were previously unknown. All the developments discussed are placed within their historical context, allowing the reader to trace the roots of the theory back through the work of many generations of great mathematicians. Particular attention is given to the work of George Cecil Jaffé, who laid the foundation with the calculation of the quantum mechanical energy levels of the hydrogen molecule ion</subfield></datafield><datafield tag="600" ind1="1" ind2="4"><subfield code="a">Jaffé, George / 1880-1965</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations / Asymptotic theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transformations (Mathematics)</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781009123198</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781009128414?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035207984</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009128414?locatt=mode:legacy</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009128414?locatt=mode:legacy</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BTU_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009128414?locatt=mode:legacy</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049868455 |
illustrated | Not Illustrated |
indexdate | 2024-10-15T10:07:36Z |
institution | BVB |
isbn | 9781009128414 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035207984 |
oclc_num | 1456135940 |
open_access_boolean | |
owner | DE-12 DE-92 DE-634 |
owner_facet | DE-12 DE-92 DE-634 |
physical | 1 Online-Ressource (xiv, 300 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO BTU_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Encyclopedia of mathematics and its applications |
spelling | Lay, Wolfgang ca. 20./21. Jh. (DE-588)1236355687 aut Higher special functions a theory of the central two-point connection problem based on a singularity approach Wolfgang Lay Cambridge Cambridge University Press 2024 1 Online-Ressource (xiv, 300 Seiten) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications 188 Title from publisher's bibliographic system (viewed on 16 May 2024) Higher special functions emerge from boundary eigenvalue problems of Fuchsian differential equations with more than three singularities. This detailed reference provides solutions for singular boundary eigenvalue problems of linear ordinary differential equations of second order, exploring previously unknown methods for finding higher special functions. Starting from the fact that it is the singularities of a differential equation that determine the local, as well as the global, behaviour of its solutions, the author develops methods that are both new and efficient and lead to functional relationships that were previously unknown. All the developments discussed are placed within their historical context, allowing the reader to trace the roots of the theory back through the work of many generations of great mathematicians. Particular attention is given to the work of George Cecil Jaffé, who laid the foundation with the calculation of the quantum mechanical energy levels of the hydrogen molecule ion Jaffé, George / 1880-1965 Differential equations / Asymptotic theory Transformations (Mathematics) Erscheint auch als Druck-Ausgabe 9781009123198 https://doi.org/10.1017/9781009128414?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Lay, Wolfgang ca. 20./21. Jh Higher special functions a theory of the central two-point connection problem based on a singularity approach Jaffé, George / 1880-1965 Differential equations / Asymptotic theory Transformations (Mathematics) |
title | Higher special functions a theory of the central two-point connection problem based on a singularity approach |
title_auth | Higher special functions a theory of the central two-point connection problem based on a singularity approach |
title_exact_search | Higher special functions a theory of the central two-point connection problem based on a singularity approach |
title_full | Higher special functions a theory of the central two-point connection problem based on a singularity approach Wolfgang Lay |
title_fullStr | Higher special functions a theory of the central two-point connection problem based on a singularity approach Wolfgang Lay |
title_full_unstemmed | Higher special functions a theory of the central two-point connection problem based on a singularity approach Wolfgang Lay |
title_short | Higher special functions |
title_sort | higher special functions a theory of the central two point connection problem based on a singularity approach |
title_sub | a theory of the central two-point connection problem based on a singularity approach |
topic | Jaffé, George / 1880-1965 Differential equations / Asymptotic theory Transformations (Mathematics) |
topic_facet | Jaffé, George / 1880-1965 Differential equations / Asymptotic theory Transformations (Mathematics) |
url | https://doi.org/10.1017/9781009128414?locatt=mode:legacy |
work_keys_str_mv | AT laywolfgang higherspecialfunctionsatheoryofthecentraltwopointconnectionproblembasedonasingularityapproach |