Fractional partial differential equations:
"This monograph offers a comprehensive exposition of the theory surrounding time-fractional partial differential equations, featuring recent advancements in fundamental techniques and results. The topics covered encompass crucial aspects of the theory, such as well-posedness, regularity, approx...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo
World Scientific
[2024]
|
Schlagworte: | |
Online-Zugang: | DE-91 Volltext URL des Erstveröffentlichers Inhaltsverzeichnis |
Zusammenfassung: | "This monograph offers a comprehensive exposition of the theory surrounding time-fractional partial differential equations, featuring recent advancements in fundamental techniques and results. The topics covered encompass crucial aspects of the theory, such as well-posedness, regularity, approximation, and optimal control. The book delves into the intricacies of fractional Navier-Stokes equations, fractional Rayleigh-Stokes equations, fractional Fokker-Planck equations, and fractional Schrödinger equations, providing a thorough exploration of these subjects. Numerous real-world applications associated with these equations are meticulously examined, enhancing the practical relevance of the presented concepts. The content of this monograph reflects the culmination of the author's research endeavors, as well as collaborative contributions from experts over the past five years. Rooted in the latest advancements, it not only serves as a valuable resource for understanding the theoretical foundations but also lays the groundwork for delving deeper into the subject and navigating the extensive research landscape. Geared towards researchers, graduate students, and PhD scholars specializing in differential equations, applied analysis, and related research domains, this monograph facilitates a nuanced understanding of time-fractional partial differential equations and their broader implications"-- |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | 1 Online-Ressource (xv, 302 Seiten) |
ISBN: | 9789811290411 9789811290428 |
DOI: | 10.1142/13764 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049860796 | ||
003 | DE-604 | ||
005 | 20240925 | ||
007 | cr|uuu---uuuuu | ||
008 | 240910s2024 xx o|||| 00||| eng d | ||
020 | |a 9789811290411 |c ebook for institutions |9 978-981-12-9041-1 | ||
020 | |a 9789811290428 |c ebook for individuals |9 978-981-12-9042-8 | ||
024 | 7 | |a 10.1142/13764 |2 doi | |
035 | |a (OCoLC)1466900875 | ||
035 | |a (DE-599)KXP1890135194 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
082 | 0 | |a 515/.353 |2 23 | |
084 | |a MAT 359 |2 stub | ||
100 | 1 | |a Zhou, Yong |d 1964- |e Verfasser |0 (DE-588)1062995449 |4 aut | |
245 | 1 | 0 | |a Fractional partial differential equations |c Yong Zhou (Xiangtan University, China, Macau University of Science and Technology, China) |
264 | 1 | |a New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo |b World Scientific |c [2024] | |
300 | |a 1 Online-Ressource (xv, 302 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
520 | 3 | |a "This monograph offers a comprehensive exposition of the theory surrounding time-fractional partial differential equations, featuring recent advancements in fundamental techniques and results. The topics covered encompass crucial aspects of the theory, such as well-posedness, regularity, approximation, and optimal control. The book delves into the intricacies of fractional Navier-Stokes equations, fractional Rayleigh-Stokes equations, fractional Fokker-Planck equations, and fractional Schrödinger equations, providing a thorough exploration of these subjects. Numerous real-world applications associated with these equations are meticulously examined, enhancing the practical relevance of the presented concepts. The content of this monograph reflects the culmination of the author's research endeavors, as well as collaborative contributions from experts over the past five years. Rooted in the latest advancements, it not only serves as a valuable resource for understanding the theoretical foundations but also lays the groundwork for delving deeper into the subject and navigating the extensive research landscape. Geared towards researchers, graduate students, and PhD scholars specializing in differential equations, applied analysis, and related research domains, this monograph facilitates a nuanced understanding of time-fractional partial differential equations and their broader implications"-- | |
653 | 0 | |a Fractional differential equations | |
653 | 0 | |a Differential equations, Partial | |
653 | 0 | |a Fractional calculus | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-981-12-9040-4 |
856 | 4 | 0 | |u https://doi.org/10.1142/13764 |x Resolving-System |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 0 | |u https://www.worldscientific.com/worldscibooks/10.1142/13764#t=toc |x Verlag |z URL des Erstveröffentlichers |
856 | 4 | 2 | |m DE-601 |q pdf/application |u http://www.gbv.de/dms/bowker/toc/9789811290404.pdf |v 2024-07-28 |x Aggregator |3 Inhaltsverzeichnis |
912 | |a ZDB-124-WOP | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035200518 | |
966 | e | |u https://doi.org/10.1142/13764 |l DE-91 |p ZDB-124-WOP |q TUM_Einzelkauf_2024 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1817696647523598336 |
---|---|
adam_text | |
any_adam_object | |
author | Zhou, Yong 1964- |
author_GND | (DE-588)1062995449 |
author_facet | Zhou, Yong 1964- |
author_role | aut |
author_sort | Zhou, Yong 1964- |
author_variant | y z yz |
building | Verbundindex |
bvnumber | BV049860796 |
classification_tum | MAT 359 |
collection | ZDB-124-WOP |
ctrlnum | (OCoLC)1466900875 (DE-599)KXP1890135194 |
dewey-full | 515/.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.353 |
dewey-search | 515/.353 |
dewey-sort | 3515 3353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1142/13764 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV049860796</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240925</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240910s2024 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811290411</subfield><subfield code="c">ebook for institutions</subfield><subfield code="9">978-981-12-9041-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811290428</subfield><subfield code="c">ebook for individuals</subfield><subfield code="9">978-981-12-9042-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1142/13764</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1466900875</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1890135194</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 359</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Yong</subfield><subfield code="d">1964-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1062995449</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fractional partial differential equations</subfield><subfield code="c">Yong Zhou (Xiangtan University, China, Macau University of Science and Technology, China)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 302 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"This monograph offers a comprehensive exposition of the theory surrounding time-fractional partial differential equations, featuring recent advancements in fundamental techniques and results. The topics covered encompass crucial aspects of the theory, such as well-posedness, regularity, approximation, and optimal control. The book delves into the intricacies of fractional Navier-Stokes equations, fractional Rayleigh-Stokes equations, fractional Fokker-Planck equations, and fractional Schrödinger equations, providing a thorough exploration of these subjects. Numerous real-world applications associated with these equations are meticulously examined, enhancing the practical relevance of the presented concepts. The content of this monograph reflects the culmination of the author's research endeavors, as well as collaborative contributions from experts over the past five years. Rooted in the latest advancements, it not only serves as a valuable resource for understanding the theoretical foundations but also lays the groundwork for delving deeper into the subject and navigating the extensive research landscape. Geared towards researchers, graduate students, and PhD scholars specializing in differential equations, applied analysis, and related research domains, this monograph facilitates a nuanced understanding of time-fractional partial differential equations and their broader implications"--</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Fractional differential equations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Fractional calculus</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-981-12-9040-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1142/13764</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.worldscientific.com/worldscibooks/10.1142/13764#t=toc</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DE-601</subfield><subfield code="q">pdf/application</subfield><subfield code="u">http://www.gbv.de/dms/bowker/toc/9789811290404.pdf</subfield><subfield code="v">2024-07-28</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035200518</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1142/13764</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">TUM_Einzelkauf_2024</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049860796 |
illustrated | Not Illustrated |
indexdate | 2024-12-06T13:10:07Z |
institution | BVB |
isbn | 9789811290411 9789811290428 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035200518 |
oclc_num | 1466900875 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 1 Online-Ressource (xv, 302 Seiten) |
psigel | ZDB-124-WOP ZDB-124-WOP TUM_Einzelkauf_2024 |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | World Scientific |
record_format | marc |
spelling | Zhou, Yong 1964- Verfasser (DE-588)1062995449 aut Fractional partial differential equations Yong Zhou (Xiangtan University, China, Macau University of Science and Technology, China) New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo World Scientific [2024] 1 Online-Ressource (xv, 302 Seiten) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index "This monograph offers a comprehensive exposition of the theory surrounding time-fractional partial differential equations, featuring recent advancements in fundamental techniques and results. The topics covered encompass crucial aspects of the theory, such as well-posedness, regularity, approximation, and optimal control. The book delves into the intricacies of fractional Navier-Stokes equations, fractional Rayleigh-Stokes equations, fractional Fokker-Planck equations, and fractional Schrödinger equations, providing a thorough exploration of these subjects. Numerous real-world applications associated with these equations are meticulously examined, enhancing the practical relevance of the presented concepts. The content of this monograph reflects the culmination of the author's research endeavors, as well as collaborative contributions from experts over the past five years. Rooted in the latest advancements, it not only serves as a valuable resource for understanding the theoretical foundations but also lays the groundwork for delving deeper into the subject and navigating the extensive research landscape. Geared towards researchers, graduate students, and PhD scholars specializing in differential equations, applied analysis, and related research domains, this monograph facilitates a nuanced understanding of time-fractional partial differential equations and their broader implications"-- Fractional differential equations Differential equations, Partial Fractional calculus Erscheint auch als Druck-Ausgabe, Hardcover 978-981-12-9040-4 https://doi.org/10.1142/13764 Resolving-System URL des Erstveröffentlichers Volltext https://www.worldscientific.com/worldscibooks/10.1142/13764#t=toc Verlag URL des Erstveröffentlichers DE-601 pdf/application http://www.gbv.de/dms/bowker/toc/9789811290404.pdf 2024-07-28 Aggregator Inhaltsverzeichnis |
spellingShingle | Zhou, Yong 1964- Fractional partial differential equations |
title | Fractional partial differential equations |
title_auth | Fractional partial differential equations |
title_exact_search | Fractional partial differential equations |
title_full | Fractional partial differential equations Yong Zhou (Xiangtan University, China, Macau University of Science and Technology, China) |
title_fullStr | Fractional partial differential equations Yong Zhou (Xiangtan University, China, Macau University of Science and Technology, China) |
title_full_unstemmed | Fractional partial differential equations Yong Zhou (Xiangtan University, China, Macau University of Science and Technology, China) |
title_short | Fractional partial differential equations |
title_sort | fractional partial differential equations |
url | https://doi.org/10.1142/13764 https://www.worldscientific.com/worldscibooks/10.1142/13764#t=toc http://www.gbv.de/dms/bowker/toc/9789811290404.pdf |
work_keys_str_mv | AT zhouyong fractionalpartialdifferentialequations |