Delay ordinary and partial differential equations:
Delay Ordinary and Partial Differential Equationsis devoted to linear and nonlinear ordinary and partial differential equations with constant and variable delay. It considers qualitative features of delay differential equations and formulates typical problem statements. Exact, approximate analytical...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boca Raton ; London ; New York
CRC Press
2024
|
Ausgabe: | First edition |
Schriftenreihe: | Advances in applied mathematics
|
Schlagworte: | |
Online-Zugang: | DE-91 |
Zusammenfassung: | Delay Ordinary and Partial Differential Equationsis devoted to linear and nonlinear ordinary and partial differential equations with constant and variable delay. It considers qualitative features of delay differential equations and formulates typical problem statements. Exact, approximate analytical and numerical methods for solving such equations are described, including the method of steps, methods of integral transformations, method of regular expansion in a small parameter, method of matched asymptotic expansions, iteration-type methods, Adomian decomposition method, collocation method, Galerkin-type projection methods, Euler and Runge-Kutta methods, shooting method, method of lines, finite-difference methods for PDEs, methods of generalized and functional separation of variables, method of functional constraints, method of generating equations, and more. The presentation of the theoretical material is accompanied by examples of the practical application of methods to obtain the desired solutions. Exact solutions are constructed for many nonlinear delay reaction-diffusion and wave-type PDEs that depend on one or more arbitrary functions. A review is given of the most common mathematical models with delay used in population theory, biology, medicine, economics, and other applications. The book contains much new material previously unpublished in monographs. It is intended for a broad audience of scientists, university professors, and graduate and postgraduate students specializing in applied and computational mathematics, mathematical physics, mechanics, control theory, biology, medicine, chemical technology, ecology, economics, and other disciplines. Individual sections of the book and examples are suitable for lecture courses on applied mathematics, mathematical physics, and differential equations for delivering special courses and for practical training |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | 1 Online-Ressource (xviii, 415 Seiten) Diagramme |
ISBN: | 9781003042310 1003042317 1000925919 9781000925890 1000925897 9781000925913 |
Internformat
MARC
LEADER | 00000nam a22000001c 4500 | ||
---|---|---|---|
001 | BV049860543 | ||
003 | DE-604 | ||
005 | 20240925 | ||
007 | cr|uuu---uuuuu | ||
008 | 240909s2024 xxu|||| o|||| 00||| eng d | ||
020 | |a 9781003042310 |9 978-1-00-304231-0 | ||
020 | |a 1003042317 |c electronic bk. |9 1-00-304231-7 | ||
020 | |a 1000925919 |c EPUB |9 1-00-092591-9 | ||
020 | |a 9781000925890 |c PDF |9 978-1-00-092589-0 | ||
020 | |a 1000925897 |c PDF |9 1-00-092589-7 | ||
020 | |a 9781000925913 |9 978-1-00-092591-3 | ||
035 | |a (OCoLC)1466909100 | ||
035 | |a (DE-599)KEP09610404X | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-91G | ||
084 | |a MAT 340 |2 stub | ||
100 | 1 | |a Poljanin, Andrej D. |d 1951- |e Verfasser |0 (DE-588)128391251 |4 aut | |
245 | 1 | 0 | |a Delay ordinary and partial differential equations |c Andrei D. Polyanin, Vsevolod G. Sorokin, Alexei I. Zhurov |
250 | |a First edition | ||
264 | 1 | |a Boca Raton ; London ; New York |b CRC Press |c 2024 | |
300 | |a 1 Online-Ressource (xviii, 415 Seiten) |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Advances in applied mathematics | |
500 | |a Includes bibliographical references and index | ||
520 | 3 | |a Delay Ordinary and Partial Differential Equationsis devoted to linear and nonlinear ordinary and partial differential equations with constant and variable delay. It considers qualitative features of delay differential equations and formulates typical problem statements. Exact, approximate analytical and numerical methods for solving such equations are described, including the method of steps, methods of integral transformations, method of regular expansion in a small parameter, method of matched asymptotic expansions, iteration-type methods, Adomian decomposition method, collocation method, Galerkin-type projection methods, Euler and Runge-Kutta methods, shooting method, method of lines, finite-difference methods for PDEs, methods of generalized and functional separation of variables, method of functional constraints, method of generating equations, and more. The presentation of the theoretical material is accompanied by examples of the practical application of methods to obtain the desired solutions. Exact solutions are constructed for many nonlinear delay reaction-diffusion and wave-type PDEs that depend on one or more arbitrary functions. A review is given of the most common mathematical models with delay used in population theory, biology, medicine, economics, and other applications. The book contains much new material previously unpublished in monographs. It is intended for a broad audience of scientists, university professors, and graduate and postgraduate students specializing in applied and computational mathematics, mathematical physics, mechanics, control theory, biology, medicine, chemical technology, ecology, economics, and other disciplines. Individual sections of the book and examples are suitable for lecture courses on applied mathematics, mathematical physics, and differential equations for delivering special courses and for practical training | |
653 | 0 | |a Delay differential equations | |
653 | 0 | |a Differential equations, Partial | |
653 | 0 | |a Équations différentielles à retard | |
653 | 0 | |a Équations aux dérivées partielles | |
653 | 0 | |a MATHEMATICS / Differential Equations | |
653 | 0 | |a Delay differential equations | |
653 | 0 | |a Differential equations, Partial | |
700 | 1 | |a Sorokin, Vsevolod G. |e Verfasser |4 aut | |
700 | 1 | |a Zhurov, Alexei I. |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-0-367-48691-4 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-1-032-54986-6 |
912 | |a ZDB-7-TFC | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035200270 | |
966 | e | |u https://doi.org/10.1201/9781003042310 |l DE-91 |p ZDB-7-TFC |q TUM_Einzelkauf_2024 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1817696646186663936 |
---|---|
adam_text | |
any_adam_object | |
author | Poljanin, Andrej D. 1951- Sorokin, Vsevolod G. Zhurov, Alexei I. |
author_GND | (DE-588)128391251 |
author_facet | Poljanin, Andrej D. 1951- Sorokin, Vsevolod G. Zhurov, Alexei I. |
author_role | aut aut aut |
author_sort | Poljanin, Andrej D. 1951- |
author_variant | a d p ad adp v g s vg vgs a i z ai aiz |
building | Verbundindex |
bvnumber | BV049860543 |
classification_tum | MAT 340 |
collection | ZDB-7-TFC |
ctrlnum | (OCoLC)1466909100 (DE-599)KEP09610404X |
discipline | Mathematik |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000001c 4500</leader><controlfield tag="001">BV049860543</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240925</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240909s2024 xxu|||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781003042310</subfield><subfield code="9">978-1-00-304231-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1003042317</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-00-304231-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1000925919</subfield><subfield code="c">EPUB</subfield><subfield code="9">1-00-092591-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000925890</subfield><subfield code="c">PDF</subfield><subfield code="9">978-1-00-092589-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1000925897</subfield><subfield code="c">PDF</subfield><subfield code="9">1-00-092589-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000925913</subfield><subfield code="9">978-1-00-092591-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1466909100</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP09610404X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 340</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Poljanin, Andrej D.</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128391251</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Delay ordinary and partial differential equations</subfield><subfield code="c">Andrei D. Polyanin, Vsevolod G. Sorokin, Alexei I. Zhurov</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton ; London ; New York</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 415 Seiten)</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advances in applied mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Delay Ordinary and Partial Differential Equationsis devoted to linear and nonlinear ordinary and partial differential equations with constant and variable delay. It considers qualitative features of delay differential equations and formulates typical problem statements. Exact, approximate analytical and numerical methods for solving such equations are described, including the method of steps, methods of integral transformations, method of regular expansion in a small parameter, method of matched asymptotic expansions, iteration-type methods, Adomian decomposition method, collocation method, Galerkin-type projection methods, Euler and Runge-Kutta methods, shooting method, method of lines, finite-difference methods for PDEs, methods of generalized and functional separation of variables, method of functional constraints, method of generating equations, and more. The presentation of the theoretical material is accompanied by examples of the practical application of methods to obtain the desired solutions. Exact solutions are constructed for many nonlinear delay reaction-diffusion and wave-type PDEs that depend on one or more arbitrary functions. A review is given of the most common mathematical models with delay used in population theory, biology, medicine, economics, and other applications. The book contains much new material previously unpublished in monographs. It is intended for a broad audience of scientists, university professors, and graduate and postgraduate students specializing in applied and computational mathematics, mathematical physics, mechanics, control theory, biology, medicine, chemical technology, ecology, economics, and other disciplines. Individual sections of the book and examples are suitable for lecture courses on applied mathematics, mathematical physics, and differential equations for delivering special courses and for practical training</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Delay differential equations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Équations différentielles à retard</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Équations aux dérivées partielles</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">MATHEMATICS / Differential Equations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Delay differential equations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Differential equations, Partial</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sorokin, Vsevolod G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhurov, Alexei I.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-0-367-48691-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-1-032-54986-6</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-7-TFC</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035200270</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1201/9781003042310</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-7-TFC</subfield><subfield code="q">TUM_Einzelkauf_2024</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049860543 |
illustrated | Not Illustrated |
indexdate | 2024-12-06T13:10:06Z |
institution | BVB |
isbn | 9781003042310 1003042317 1000925919 9781000925890 1000925897 9781000925913 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035200270 |
oclc_num | 1466909100 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 1 Online-Ressource (xviii, 415 Seiten) Diagramme |
psigel | ZDB-7-TFC ZDB-7-TFC TUM_Einzelkauf_2024 |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | CRC Press |
record_format | marc |
series2 | Advances in applied mathematics |
spelling | Poljanin, Andrej D. 1951- Verfasser (DE-588)128391251 aut Delay ordinary and partial differential equations Andrei D. Polyanin, Vsevolod G. Sorokin, Alexei I. Zhurov First edition Boca Raton ; London ; New York CRC Press 2024 1 Online-Ressource (xviii, 415 Seiten) Diagramme txt rdacontent c rdamedia cr rdacarrier Advances in applied mathematics Includes bibliographical references and index Delay Ordinary and Partial Differential Equationsis devoted to linear and nonlinear ordinary and partial differential equations with constant and variable delay. It considers qualitative features of delay differential equations and formulates typical problem statements. Exact, approximate analytical and numerical methods for solving such equations are described, including the method of steps, methods of integral transformations, method of regular expansion in a small parameter, method of matched asymptotic expansions, iteration-type methods, Adomian decomposition method, collocation method, Galerkin-type projection methods, Euler and Runge-Kutta methods, shooting method, method of lines, finite-difference methods for PDEs, methods of generalized and functional separation of variables, method of functional constraints, method of generating equations, and more. The presentation of the theoretical material is accompanied by examples of the practical application of methods to obtain the desired solutions. Exact solutions are constructed for many nonlinear delay reaction-diffusion and wave-type PDEs that depend on one or more arbitrary functions. A review is given of the most common mathematical models with delay used in population theory, biology, medicine, economics, and other applications. The book contains much new material previously unpublished in monographs. It is intended for a broad audience of scientists, university professors, and graduate and postgraduate students specializing in applied and computational mathematics, mathematical physics, mechanics, control theory, biology, medicine, chemical technology, ecology, economics, and other disciplines. Individual sections of the book and examples are suitable for lecture courses on applied mathematics, mathematical physics, and differential equations for delivering special courses and for practical training Delay differential equations Differential equations, Partial Équations différentielles à retard Équations aux dérivées partielles MATHEMATICS / Differential Equations Sorokin, Vsevolod G. Verfasser aut Zhurov, Alexei I. Verfasser aut Erscheint auch als Druck-Ausgabe, Hardcover 978-0-367-48691-4 Erscheint auch als Druck-Ausgabe, Paperback 978-1-032-54986-6 |
spellingShingle | Poljanin, Andrej D. 1951- Sorokin, Vsevolod G. Zhurov, Alexei I. Delay ordinary and partial differential equations |
title | Delay ordinary and partial differential equations |
title_auth | Delay ordinary and partial differential equations |
title_exact_search | Delay ordinary and partial differential equations |
title_full | Delay ordinary and partial differential equations Andrei D. Polyanin, Vsevolod G. Sorokin, Alexei I. Zhurov |
title_fullStr | Delay ordinary and partial differential equations Andrei D. Polyanin, Vsevolod G. Sorokin, Alexei I. Zhurov |
title_full_unstemmed | Delay ordinary and partial differential equations Andrei D. Polyanin, Vsevolod G. Sorokin, Alexei I. Zhurov |
title_short | Delay ordinary and partial differential equations |
title_sort | delay ordinary and partial differential equations |
work_keys_str_mv | AT poljaninandrejd delayordinaryandpartialdifferentialequations AT sorokinvsevolodg delayordinaryandpartialdifferentialequations AT zhurovalexeii delayordinaryandpartialdifferentialequations |