Mathematical Structures: From Linear Algebra over Rings to Geometry with Sheaves
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2024
Berlin, Heidelberg Springer |
Ausgabe: | 1st ed. 2024 |
Schriftenreihe: | Mathematics Study Resources
13 |
Schlagworte: | |
Online-Zugang: | DE-634 DE-1050 DE-92 DE-898 DE-861 DE-863 DE-862 DE-523 DE-91 DE-19 DE-703 DE-20 DE-706 DE-824 DE-739 Volltext |
Beschreibung: | 1 Online-Ressource (X, 333 p. 85 illus) |
ISBN: | 9783662694121 |
ISSN: | 2731-3832 |
DOI: | 10.1007/978-3-662-69412-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV049847008 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 240903s2024 |||| o||u| ||||||eng d | ||
020 | |a 9783662694121 |c Online |9 978-3-662-69412-1 | ||
024 | 7 | |a 10.1007/978-3-662-69412-1 |2 doi | |
035 | |a (ZDB-2-SMA)9783662694121 | ||
035 | |a (OCoLC)1454752305 | ||
035 | |a (DE-599)BVBBV049847008 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-523 |a DE-91 |a DE-634 |a DE-1050 |a DE-824 |a DE-861 |a DE-739 |a DE-863 |a DE-703 |a DE-92 |a DE-20 |a DE-898 |a DE-706 |a DE-862 |a DE-19 | ||
082 | 0 | |a 516.35 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Hilgert, Joachim |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mathematical Structures |b From Linear Algebra over Rings to Geometry with Sheaves |c by Joachim Hilgert |
250 | |a 1st ed. 2024 | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2024 | |
264 | 1 | |a Berlin, Heidelberg |b Springer | |
300 | |a 1 Online-Ressource (X, 333 p. 85 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics Study Resources |v 13 |x 2731-3832 | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Global Analysis and Analysis on Manifolds | |
650 | 4 | |a Commutative Rings and Algebras | |
650 | 4 | |a Category Theory, Homological Algebra | |
650 | 4 | |a Algebraic geometry | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Manifolds (Mathematics) | |
650 | 4 | |a Commutative algebra | |
650 | 4 | |a Commutative rings | |
650 | 4 | |a Algebra, Homological | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-662-69411-4 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-662-69413-8 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-69412-1 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SMA | ||
940 | 1 | |q ZDB-2-SMA_2024 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035186883 | |
966 | e | |u https://doi.org/10.1007/978-3-662-69412-1 |l DE-634 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-69412-1 |l DE-1050 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-69412-1 |l DE-92 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-69412-1 |l DE-898 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-69412-1 |l DE-861 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-69412-1 |l DE-863 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-69412-1 |l DE-862 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-69412-1 |l DE-523 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-69412-1 |l DE-91 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-69412-1 |l DE-19 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-69412-1 |l DE-703 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-69412-1 |l DE-20 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-69412-1 |l DE-706 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-69412-1 |l DE-824 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-662-69412-1 |l DE-739 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1809774448967942144 |
---|---|
adam_text | |
any_adam_object | |
author | Hilgert, Joachim |
author_facet | Hilgert, Joachim |
author_role | aut |
author_sort | Hilgert, Joachim |
author_variant | j h jh |
building | Verbundindex |
bvnumber | BV049847008 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (ZDB-2-SMA)9783662694121 (OCoLC)1454752305 (DE-599)BVBBV049847008 |
dewey-full | 516.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.35 |
dewey-search | 516.35 |
dewey-sort | 3516.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-69412-1 |
edition | 1st ed. 2024 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zcb4500</leader><controlfield tag="001">BV049847008</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240903s2024 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662694121</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-69412-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-69412-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SMA)9783662694121</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1454752305</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049847008</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-523</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hilgert, Joachim</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical Structures</subfield><subfield code="b">From Linear Algebra over Rings to Geometry with Sheaves</subfield><subfield code="c">by Joachim Hilgert</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed. 2024</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2024</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 333 p. 85 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics Study Resources</subfield><subfield code="v">13</subfield><subfield code="x">2731-3832</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Analysis and Analysis on Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative Rings and Algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Category Theory, Homological Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative rings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra, Homological</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-662-69411-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-662-69413-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-69412-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_2024</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035186883</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-69412-1</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-69412-1</subfield><subfield code="l">DE-1050</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-69412-1</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-69412-1</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-69412-1</subfield><subfield code="l">DE-861</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-69412-1</subfield><subfield code="l">DE-863</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-69412-1</subfield><subfield code="l">DE-862</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-69412-1</subfield><subfield code="l">DE-523</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-69412-1</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-69412-1</subfield><subfield code="l">DE-19</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-69412-1</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-69412-1</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-69412-1</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-69412-1</subfield><subfield code="l">DE-824</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-662-69412-1</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049847008 |
illustrated | Not Illustrated |
indexdate | 2024-09-10T04:30:10Z |
institution | BVB |
isbn | 9783662694121 |
issn | 2731-3832 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035186883 |
oclc_num | 1454752305 |
open_access_boolean | |
owner | DE-523 DE-91 DE-BY-TUM DE-634 DE-1050 DE-824 DE-861 DE-739 DE-863 DE-BY-FWS DE-703 DE-92 DE-20 DE-898 DE-BY-UBR DE-706 DE-862 DE-BY-FWS DE-19 DE-BY-UBM |
owner_facet | DE-523 DE-91 DE-BY-TUM DE-634 DE-1050 DE-824 DE-861 DE-739 DE-863 DE-BY-FWS DE-703 DE-92 DE-20 DE-898 DE-BY-UBR DE-706 DE-862 DE-BY-FWS DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (X, 333 p. 85 illus) |
psigel | ZDB-2-SMA ZDB-2-SMA_2024 |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Springer Berlin Heidelberg Springer |
record_format | marc |
series2 | Mathematics Study Resources |
spellingShingle | Hilgert, Joachim Mathematical Structures From Linear Algebra over Rings to Geometry with Sheaves Algebraic Geometry Global Analysis and Analysis on Manifolds Commutative Rings and Algebras Category Theory, Homological Algebra Algebraic geometry Global analysis (Mathematics) Manifolds (Mathematics) Commutative algebra Commutative rings Algebra, Homological |
title | Mathematical Structures From Linear Algebra over Rings to Geometry with Sheaves |
title_auth | Mathematical Structures From Linear Algebra over Rings to Geometry with Sheaves |
title_exact_search | Mathematical Structures From Linear Algebra over Rings to Geometry with Sheaves |
title_full | Mathematical Structures From Linear Algebra over Rings to Geometry with Sheaves by Joachim Hilgert |
title_fullStr | Mathematical Structures From Linear Algebra over Rings to Geometry with Sheaves by Joachim Hilgert |
title_full_unstemmed | Mathematical Structures From Linear Algebra over Rings to Geometry with Sheaves by Joachim Hilgert |
title_short | Mathematical Structures |
title_sort | mathematical structures from linear algebra over rings to geometry with sheaves |
title_sub | From Linear Algebra over Rings to Geometry with Sheaves |
topic | Algebraic Geometry Global Analysis and Analysis on Manifolds Commutative Rings and Algebras Category Theory, Homological Algebra Algebraic geometry Global analysis (Mathematics) Manifolds (Mathematics) Commutative algebra Commutative rings Algebra, Homological |
topic_facet | Algebraic Geometry Global Analysis and Analysis on Manifolds Commutative Rings and Algebras Category Theory, Homological Algebra Algebraic geometry Global analysis (Mathematics) Manifolds (Mathematics) Commutative algebra Commutative rings Algebra, Homological |
url | https://doi.org/10.1007/978-3-662-69412-1 |
work_keys_str_mv | AT hilgertjoachim mathematicalstructuresfromlinearalgebraoverringstogeometrywithsheaves |