Normal 2-coverings of the finite simple groups and their generalizations:
Introduction -- Preliminaries -- Linear groups -- Unitary groups -- Symplectic groups -- Odd dimensional orthogonal groups -- Orthogonal groups with Witt defect 1 -- Orthogonal groups with Witt defect 0 -- Proofs of the main theorems -- Almost simple groups having socle a sporadic simple group -- Dr...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham, Switzerland
Springer
[2024]
|
Schriftenreihe: | Lecture notes in mathematics
2352 |
Schlagworte: | |
Zusammenfassung: | Introduction -- Preliminaries -- Linear groups -- Unitary groups -- Symplectic groups -- Odd dimensional orthogonal groups -- Orthogonal groups with Witt defect 1 -- Orthogonal groups with Witt defect 0 -- Proofs of the main theorems -- Almost simple groups having socle a sporadic simple group -- Dropping the maximality -- Degenerate normal 2-coverings. This book provides a complete and comprehensive classification of normal 2-coverings of non-abelian simple groups and their generalizations. While offering readers a thorough understanding of these structures, and of the groups admitting them, it delves into the properties of weak normal coverings. The focal point is the weak normal covering number of a group G, the minimum number of proper subgroups required for every element of G to have a conjugate within one of these subgroups, via an element of Aut(G). This number is shown to be at least 2 for every non-abelian simple group and the non-abelian simple groups for which this minimum value is attained are classified. The discussion then moves to almost simple groups, with some insights into their weak normal covering numbers. Applications span algebraic number theory, combinatorics, Galois theory, and beyond. Compiling existing material and synthesizing it into a cohesive framework, the book gives a complete overview of this fundamental aspect of finite group theory. It will serve as a valuable resource for researchers and graduate students working on non-abelian simple groups,. |
Beschreibung: | x, 178 Seiten Diagramme 23,5 cm |
ISBN: | 9783031623479 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV049823893 | ||
003 | DE-604 | ||
005 | 20240828 | ||
007 | t | ||
008 | 240819s2024 sz |||| |||| 00||| eng d | ||
020 | |a 9783031623479 |c paperback |9 978-3-031-62347-9 | ||
035 | |a (OCoLC)1450898264 | ||
035 | |a (DE-599)KXP1897715188 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH | ||
049 | |a DE-188 |a DE-83 | ||
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a 20Dxx |2 msc/2020 | ||
100 | 1 | |a Bubboloni, Daniela |0 (DE-588)1339426412 |4 aut | |
245 | 1 | 0 | |a Normal 2-coverings of the finite simple groups and their generalizations |c Daniela Bubboloni, Pablo Spiga, Thomas Stefan Weigel |
246 | 1 | 3 | |a Normal two-coverings of the finite simple groups and their generalizations |
264 | 1 | |a Cham, Switzerland |b Springer |c [2024] | |
264 | 4 | |c © 2024 | |
300 | |a x, 178 Seiten |b Diagramme |c 23,5 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 2352 | |
520 | 3 | |a Introduction -- Preliminaries -- Linear groups -- Unitary groups -- Symplectic groups -- Odd dimensional orthogonal groups -- Orthogonal groups with Witt defect 1 -- Orthogonal groups with Witt defect 0 -- Proofs of the main theorems -- Almost simple groups having socle a sporadic simple group -- Dropping the maximality -- Degenerate normal 2-coverings. | |
520 | 3 | |a This book provides a complete and comprehensive classification of normal 2-coverings of non-abelian simple groups and their generalizations. While offering readers a thorough understanding of these structures, and of the groups admitting them, it delves into the properties of weak normal coverings. The focal point is the weak normal covering number of a group G, the minimum number of proper subgroups required for every element of G to have a conjugate within one of these subgroups, via an element of Aut(G). This number is shown to be at least 2 for every non-abelian simple group and the non-abelian simple groups for which this minimum value is attained are classified. The discussion then moves to almost simple groups, with some insights into their weak normal covering numbers. Applications span algebraic number theory, combinatorics, Galois theory, and beyond. Compiling existing material and synthesizing it into a cohesive framework, the book gives a complete overview of this fundamental aspect of finite group theory. It will serve as a valuable resource for researchers and graduate students working on non-abelian simple groups,. | |
653 | 0 | |a Group theory. | |
653 | 0 | |a Discrete mathematics. | |
653 | 0 | |a Graph theory. | |
700 | 1 | |a Spiga, Pablo |0 (DE-588)1260696294 |4 aut | |
700 | 1 | |a Weigel, Thomas |0 (DE-588)1082219401 |4 aut | |
710 | 2 | |a Springer Nature Switzerland AG |0 (DE-588)1211528561 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-031-62348-6 |
830 | 0 | |a Lecture notes in mathematics |v 2352 |w (DE-604)BV000676446 |9 2352 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035164019 |
Datensatz im Suchindex
_version_ | 1809767765776531456 |
---|---|
adam_text | |
any_adam_object | |
author | Bubboloni, Daniela Spiga, Pablo Weigel, Thomas |
author_GND | (DE-588)1339426412 (DE-588)1260696294 (DE-588)1082219401 |
author_facet | Bubboloni, Daniela Spiga, Pablo Weigel, Thomas |
author_role | aut aut aut |
author_sort | Bubboloni, Daniela |
author_variant | d b db p s ps t w tw |
building | Verbundindex |
bvnumber | BV049823893 |
classification_rvk | SI 850 |
ctrlnum | (OCoLC)1450898264 (DE-599)KXP1897715188 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV049823893</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240828</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">240819s2024 sz |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031623479</subfield><subfield code="c">paperback</subfield><subfield code="9">978-3-031-62347-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1450898264</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1897715188</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">20Dxx</subfield><subfield code="2">msc/2020</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bubboloni, Daniela</subfield><subfield code="0">(DE-588)1339426412</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Normal 2-coverings of the finite simple groups and their generalizations</subfield><subfield code="c">Daniela Bubboloni, Pablo Spiga, Thomas Stefan Weigel</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Normal two-coverings of the finite simple groups and their generalizations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 178 Seiten</subfield><subfield code="b">Diagramme</subfield><subfield code="c">23,5 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">2352</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Introduction -- Preliminaries -- Linear groups -- Unitary groups -- Symplectic groups -- Odd dimensional orthogonal groups -- Orthogonal groups with Witt defect 1 -- Orthogonal groups with Witt defect 0 -- Proofs of the main theorems -- Almost simple groups having socle a sporadic simple group -- Dropping the maximality -- Degenerate normal 2-coverings.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This book provides a complete and comprehensive classification of normal 2-coverings of non-abelian simple groups and their generalizations. While offering readers a thorough understanding of these structures, and of the groups admitting them, it delves into the properties of weak normal coverings. The focal point is the weak normal covering number of a group G, the minimum number of proper subgroups required for every element of G to have a conjugate within one of these subgroups, via an element of Aut(G). This number is shown to be at least 2 for every non-abelian simple group and the non-abelian simple groups for which this minimum value is attained are classified. The discussion then moves to almost simple groups, with some insights into their weak normal covering numbers. Applications span algebraic number theory, combinatorics, Galois theory, and beyond. Compiling existing material and synthesizing it into a cohesive framework, the book gives a complete overview of this fundamental aspect of finite group theory. It will serve as a valuable resource for researchers and graduate students working on non-abelian simple groups,.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Group theory.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Discrete mathematics.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Graph theory.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Spiga, Pablo</subfield><subfield code="0">(DE-588)1260696294</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weigel, Thomas</subfield><subfield code="0">(DE-588)1082219401</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Springer Nature Switzerland AG</subfield><subfield code="0">(DE-588)1211528561</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-031-62348-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">2352</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">2352</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035164019</subfield></datafield></record></collection> |
id | DE-604.BV049823893 |
illustrated | Not Illustrated |
indexdate | 2024-09-10T00:43:56Z |
institution | BVB |
institution_GND | (DE-588)1211528561 |
isbn | 9783031623479 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035164019 |
oclc_num | 1450898264 |
open_access_boolean | |
owner | DE-188 DE-83 |
owner_facet | DE-188 DE-83 |
physical | x, 178 Seiten Diagramme 23,5 cm |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Springer |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics |
spelling | Bubboloni, Daniela (DE-588)1339426412 aut Normal 2-coverings of the finite simple groups and their generalizations Daniela Bubboloni, Pablo Spiga, Thomas Stefan Weigel Normal two-coverings of the finite simple groups and their generalizations Cham, Switzerland Springer [2024] © 2024 x, 178 Seiten Diagramme 23,5 cm txt rdacontent n rdamedia nc rdacarrier Lecture notes in mathematics 2352 Introduction -- Preliminaries -- Linear groups -- Unitary groups -- Symplectic groups -- Odd dimensional orthogonal groups -- Orthogonal groups with Witt defect 1 -- Orthogonal groups with Witt defect 0 -- Proofs of the main theorems -- Almost simple groups having socle a sporadic simple group -- Dropping the maximality -- Degenerate normal 2-coverings. This book provides a complete and comprehensive classification of normal 2-coverings of non-abelian simple groups and their generalizations. While offering readers a thorough understanding of these structures, and of the groups admitting them, it delves into the properties of weak normal coverings. The focal point is the weak normal covering number of a group G, the minimum number of proper subgroups required for every element of G to have a conjugate within one of these subgroups, via an element of Aut(G). This number is shown to be at least 2 for every non-abelian simple group and the non-abelian simple groups for which this minimum value is attained are classified. The discussion then moves to almost simple groups, with some insights into their weak normal covering numbers. Applications span algebraic number theory, combinatorics, Galois theory, and beyond. Compiling existing material and synthesizing it into a cohesive framework, the book gives a complete overview of this fundamental aspect of finite group theory. It will serve as a valuable resource for researchers and graduate students working on non-abelian simple groups,. Group theory. Discrete mathematics. Graph theory. Spiga, Pablo (DE-588)1260696294 aut Weigel, Thomas (DE-588)1082219401 aut Springer Nature Switzerland AG (DE-588)1211528561 pbl Erscheint auch als Online-Ausgabe 978-3-031-62348-6 Lecture notes in mathematics 2352 (DE-604)BV000676446 2352 |
spellingShingle | Bubboloni, Daniela Spiga, Pablo Weigel, Thomas Normal 2-coverings of the finite simple groups and their generalizations Lecture notes in mathematics |
title | Normal 2-coverings of the finite simple groups and their generalizations |
title_alt | Normal two-coverings of the finite simple groups and their generalizations |
title_auth | Normal 2-coverings of the finite simple groups and their generalizations |
title_exact_search | Normal 2-coverings of the finite simple groups and their generalizations |
title_full | Normal 2-coverings of the finite simple groups and their generalizations Daniela Bubboloni, Pablo Spiga, Thomas Stefan Weigel |
title_fullStr | Normal 2-coverings of the finite simple groups and their generalizations Daniela Bubboloni, Pablo Spiga, Thomas Stefan Weigel |
title_full_unstemmed | Normal 2-coverings of the finite simple groups and their generalizations Daniela Bubboloni, Pablo Spiga, Thomas Stefan Weigel |
title_short | Normal 2-coverings of the finite simple groups and their generalizations |
title_sort | normal 2 coverings of the finite simple groups and their generalizations |
volume_link | (DE-604)BV000676446 |
work_keys_str_mv | AT bubbolonidaniela normal2coveringsofthefinitesimplegroupsandtheirgeneralizations AT spigapablo normal2coveringsofthefinitesimplegroupsandtheirgeneralizations AT weigelthomas normal2coveringsofthefinitesimplegroupsandtheirgeneralizations AT springernatureswitzerlandag normal2coveringsofthefinitesimplegroupsandtheirgeneralizations AT bubbolonidaniela normaltwocoveringsofthefinitesimplegroupsandtheirgeneralizations AT spigapablo normaltwocoveringsofthefinitesimplegroupsandtheirgeneralizations AT weigelthomas normaltwocoveringsofthefinitesimplegroupsandtheirgeneralizations AT springernatureswitzerlandag normaltwocoveringsofthefinitesimplegroupsandtheirgeneralizations |