Linear algebra done right:
Publisher’s description: Now available in Open Access, this best-selling textbook for a second course in linear algebra is aimed at undergraduate math majors and graduate students. The fourth edition gives an expanded treatment of the singular value decomposition and its consequences. It includes a...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham, Switzerland
Springer
[2024]
|
Ausgabe: | Fourth edition |
Schriftenreihe: | Undergraduate texts in mathematics
|
Schlagworte: | |
Online-Zugang: | Rezension |
Zusammenfassung: | Publisher’s description: Now available in Open Access, this best-selling textbook for a second course in linear algebra is aimed at undergraduate math majors and graduate students. The fourth edition gives an expanded treatment of the singular value decomposition and its consequences. It includes a new chapter on multilinear algebra, treating bilinear forms, quadratic forms, tensor products, and an approach to determinants via alternating multilinear forms. This new edition also increases the use of the minimal polynomial to provide cleaner proofs of multiple results. Also, over 250 new exercises have been added. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. Beautiful formatting creates pages with an unusually student-friendly appearance in both print and electronic versions. No prerequisites are assumed other than the usual demand for suitable mathematical maturity. The text starts by discussing vector spaces, linear independence, span, basis, and dimension. The book then deals with linear maps, eigenvalues, and eigenvectors. Inner-product spaces are introduced, leading to the finite-dimensional spectral theorem and its consequences. Generalized eigenvectors are then used to provide insight into the structure of a linear operator. |
Beschreibung: | xvii, 389 Seiten Illustrationen |
ISBN: | 9783031410253 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049816304 | ||
003 | DE-604 | ||
005 | 20240828 | ||
007 | t | ||
008 | 240812s2024 sz a||| |||| 00||| eng d | ||
020 | |a 9783031410253 |9 978-3-031-41025-3 | ||
035 | |a (OCoLC)1425945454 | ||
035 | |a (DE-599)KXP1869416562 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH |a gw |c XA-DE |a xxu |c XD-US |a ne |c XA-NL |a xxk |c XA-GB | ||
049 | |a DE-91G | ||
084 | |a SK 220 |0 (DE-625)143224: |2 rvk | ||
084 | |a 15A15 |2 msc | ||
084 | |a 15A04 |2 msc | ||
084 | |a 15A21 |2 msc | ||
084 | |a 15Axx |2 msc | ||
084 | |a MAT 150 |2 stub | ||
084 | |a 15A18 |2 msc | ||
084 | |a 31.25 |2 bkl | ||
084 | |a *15-01 |2 msc | ||
100 | 1 | |a Axler, Sheldon Jay |d 1949- |e Verfasser |0 (DE-588)113221231 |4 aut | |
245 | 1 | 0 | |a Linear algebra done right |c Sheldon Axler |
250 | |a Fourth edition | ||
264 | 1 | |a Cham, Switzerland |b Springer |c [2024] | |
300 | |a xvii, 389 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Undergraduate texts in mathematics | |
520 | 3 | |a Publisher’s description: Now available in Open Access, this best-selling textbook for a second course in linear algebra is aimed at undergraduate math majors and graduate students. The fourth edition gives an expanded treatment of the singular value decomposition and its consequences. It includes a new chapter on multilinear algebra, treating bilinear forms, quadratic forms, tensor products, and an approach to determinants via alternating multilinear forms. This new edition also increases the use of the minimal polynomial to provide cleaner proofs of multiple results. Also, over 250 new exercises have been added. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. Beautiful formatting creates pages with an unusually student-friendly appearance in both print and electronic versions. No prerequisites are assumed other than the usual demand for suitable mathematical maturity. The text starts by discussing vector spaces, linear independence, span, basis, and dimension. The book then deals with linear maps, eigenvalues, and eigenvectors. Inner-product spaces are introduced, leading to the finite-dimensional spectral theorem and its consequences. Generalized eigenvectors are then used to provide insight into the structure of a linear operator. | |
650 | 0 | 7 | |a Lineare Algebra |0 (DE-588)4035811-2 |2 gnd |9 rswk-swf |
653 | 0 | |a Matrix theory | |
653 | 0 | |a Mathematics | |
653 | 0 | |a Algebras, linear | |
653 | 0 | |a Mathematics | |
653 | 0 | |a Matrix theory | |
689 | 0 | 0 | |a Lineare Algebra |0 (DE-588)4035811-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Lineare Algebra |0 (DE-588)4035811-2 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-031-41026-0 |
856 | 4 | 2 | |u https://zbmath.org/7795955 |y zbMATH |z kostenfrei |3 Rezension |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035156574 |
Datensatz im Suchindex
_version_ | 1812899054857748480 |
---|---|
adam_text | |
any_adam_object | |
author | Axler, Sheldon Jay 1949- |
author_GND | (DE-588)113221231 |
author_facet | Axler, Sheldon Jay 1949- |
author_role | aut |
author_sort | Axler, Sheldon Jay 1949- |
author_variant | s j a sj sja |
building | Verbundindex |
bvnumber | BV049816304 |
classification_rvk | SK 220 |
classification_tum | MAT 150 |
ctrlnum | (OCoLC)1425945454 (DE-599)KXP1869416562 |
discipline | Mathematik |
edition | Fourth edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV049816304</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240828</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">240812s2024 sz a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031410253</subfield><subfield code="9">978-3-031-41025-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1425945454</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1869416562</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield><subfield code="a">ne</subfield><subfield code="c">XA-NL</subfield><subfield code="a">xxk</subfield><subfield code="c">XA-GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 220</subfield><subfield code="0">(DE-625)143224:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">15A15</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">15A04</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">15A21</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">15Axx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 150</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">15A18</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.25</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">*15-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Axler, Sheldon Jay</subfield><subfield code="d">1949-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)113221231</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear algebra done right</subfield><subfield code="c">Sheldon Axler</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Fourth edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvii, 389 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Undergraduate texts in mathematics</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Publisher’s description: Now available in Open Access, this best-selling textbook for a second course in linear algebra is aimed at undergraduate math majors and graduate students. The fourth edition gives an expanded treatment of the singular value decomposition and its consequences. It includes a new chapter on multilinear algebra, treating bilinear forms, quadratic forms, tensor products, and an approach to determinants via alternating multilinear forms. This new edition also increases the use of the minimal polynomial to provide cleaner proofs of multiple results. Also, over 250 new exercises have been added. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. Beautiful formatting creates pages with an unusually student-friendly appearance in both print and electronic versions. No prerequisites are assumed other than the usual demand for suitable mathematical maturity. The text starts by discussing vector spaces, linear independence, span, basis, and dimension. The book then deals with linear maps, eigenvalues, and eigenvectors. Inner-product spaces are introduced, leading to the finite-dimensional spectral theorem and its consequences. Generalized eigenvectors are then used to provide insight into the structure of a linear operator.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Matrix theory</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Algebras, linear</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Matrix theory</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lineare Algebra</subfield><subfield code="0">(DE-588)4035811-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-031-41026-0</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://zbmath.org/7795955</subfield><subfield code="y">zbMATH</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Rezension</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035156574</subfield></datafield></record></collection> |
id | DE-604.BV049816304 |
illustrated | Illustrated |
indexdate | 2024-10-14T14:14:26Z |
institution | BVB |
isbn | 9783031410253 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035156574 |
oclc_num | 1425945454 |
open_access_boolean | 1 |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | xvii, 389 Seiten Illustrationen |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Springer |
record_format | marc |
series2 | Undergraduate texts in mathematics |
spelling | Axler, Sheldon Jay 1949- Verfasser (DE-588)113221231 aut Linear algebra done right Sheldon Axler Fourth edition Cham, Switzerland Springer [2024] xvii, 389 Seiten Illustrationen txt rdacontent n rdamedia nc rdacarrier Undergraduate texts in mathematics Publisher’s description: Now available in Open Access, this best-selling textbook for a second course in linear algebra is aimed at undergraduate math majors and graduate students. The fourth edition gives an expanded treatment of the singular value decomposition and its consequences. It includes a new chapter on multilinear algebra, treating bilinear forms, quadratic forms, tensor products, and an approach to determinants via alternating multilinear forms. This new edition also increases the use of the minimal polynomial to provide cleaner proofs of multiple results. Also, over 250 new exercises have been added. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra. Beautiful formatting creates pages with an unusually student-friendly appearance in both print and electronic versions. No prerequisites are assumed other than the usual demand for suitable mathematical maturity. The text starts by discussing vector spaces, linear independence, span, basis, and dimension. The book then deals with linear maps, eigenvalues, and eigenvectors. Inner-product spaces are introduced, leading to the finite-dimensional spectral theorem and its consequences. Generalized eigenvectors are then used to provide insight into the structure of a linear operator. Lineare Algebra (DE-588)4035811-2 gnd rswk-swf Matrix theory Mathematics Algebras, linear Lineare Algebra (DE-588)4035811-2 s DE-604 Erscheint auch als Online-Ausgabe 978-3-031-41026-0 https://zbmath.org/7795955 zbMATH kostenfrei Rezension |
spellingShingle | Axler, Sheldon Jay 1949- Linear algebra done right Lineare Algebra (DE-588)4035811-2 gnd |
subject_GND | (DE-588)4035811-2 |
title | Linear algebra done right |
title_auth | Linear algebra done right |
title_exact_search | Linear algebra done right |
title_full | Linear algebra done right Sheldon Axler |
title_fullStr | Linear algebra done right Sheldon Axler |
title_full_unstemmed | Linear algebra done right Sheldon Axler |
title_short | Linear algebra done right |
title_sort | linear algebra done right |
topic | Lineare Algebra (DE-588)4035811-2 gnd |
topic_facet | Lineare Algebra |
url | https://zbmath.org/7795955 |
work_keys_str_mv | AT axlersheldonjay linearalgebradoneright |