Graphs & digraphs:

"Graphs & Digraphs masterfully employs student-friendly exposition, clear proofs, abundant examples, and numerous exercises to provide an essential understanding of the concepts, theorems, history, and applications of graph theory. This classic text, widely popular among students and instru...

Full description

Saved in:
Bibliographic Details
Main Authors: Chartrand, Gary 1936- (Author), Jordon, Heather (Author), Vatter, Vincent (Author), Zhang, Ping 1957- (Author)
Format: Book
Language:English
Published: Boca Raton, FL CRC Press, Taylor & Francis Group 2024
Edition:Seventh edition
Series:Textbooks in mathematics
Subjects:
Summary:"Graphs & Digraphs masterfully employs student-friendly exposition, clear proofs, abundant examples, and numerous exercises to provide an essential understanding of the concepts, theorems, history, and applications of graph theory. This classic text, widely popular among students and instructor alike for decades, is thoroughly streamlined in this new, seventh edition, to present a text consistent with contemporary expectations"--
Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface to the seventh edition -- About the authors -- 1. Graphs -- 1.1. Fundamentals -- 1.2. Isomorphism -- 1.3. Families of graphs -- 1.4. Operations on graphs -- 1.5. Degree sequences -- 1.6. Path and cycles -- 1.7. Connected graphs and distance -- 1.8. Trees and forests -- 1.9. Multigraphs and pseudographs -- Exercises -- 2. Digraphs -- 2.1. Fundamentals -- 2.2. Strongly connected digraphs -- 2.3. Tournaments -- 2.4. Score sequences -- Exercises -- 3. Traversability -- 3.1. Eulerian graphs and digraphs -- 3.2. Hamiltonian graphs -- 3.3. Hamiltonian digraphs -- 3.4. Highly hamiltonian graphs -- 3.5. Graph powers -- Exercises -- 4. Connectivity -- 4.1. Cut-vertices, bridges, and blocks -- 4.2. Vertex connectivity -- 4.3. Edge-connectivity -- 4.4. Menger's theorem -- Exercises -- 5. Planarity -- 5.1. Euler's formula -- 5.2. Characterizations of planarity -- 5.3. Hamiltonian planar graphs -- 5.4. The crossing number of a graph -- Exercises -- 6. Coloring -- 6.1. Vertex coloring -- 6.2. Edge coloring -- 6.3. Critical and perfect graphs -- 6.4. Maps and planar graphs -- Exercises -- 7. Flows -- 7.1. Networks -- 7.2. Max-flow min-cut theorem -- 7.3. Menger's theorems for digraphs -- 7.4. A connection to coloring -- Exercises -- 8. Factors and covers -- 8.1. Matchings and 1-factors -- 8.2. Independence and covers -- 8.3. Domination -- 8.4. Factorizations and decompositions -- 8.5. Labelings of graphs -- Exercises -- 9. Extremal graph theory -- 9.1. Avoiding a complete graph -- 9.2. Containing cycles and trees -- 9.3. Ramsey theory -- 9.4. Cages and Moore graphs -- Exercises -- 10. Embeddings -- 10.1. The genus of a graph -- 10.2. 2-Cell embeddings of graphs -- 10.3. The maximum genus of a graph -- 10.4. The graph minor theorem -- Exercises -- 11. Graphs and algebra.
Item Description:A Chapman & Hall book
Literaturverzeichnis: Seite 329-344
Physical Description:x, 354 Seiten Illustrationen
ISBN:9781032133409
9781032606989

There is no print copy available.

Interlibrary loan Place Request Caution: Not in THWS collection!