Graphs & digraphs:

"Graphs & Digraphs masterfully employs student-friendly exposition, clear proofs, abundant examples, and numerous exercises to provide an essential understanding of the concepts, theorems, history, and applications of graph theory. This classic text, widely popular among students and instru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chartrand, Gary 1936- (VerfasserIn), Jordon, Heather (VerfasserIn), Vatter, Vincent (VerfasserIn), Zhang, Ping 1957- (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Boca Raton, FL CRC Press, Taylor & Francis Group 2024
Ausgabe:Seventh edition
Schriftenreihe:Textbooks in mathematics
Schlagworte:
Zusammenfassung:"Graphs & Digraphs masterfully employs student-friendly exposition, clear proofs, abundant examples, and numerous exercises to provide an essential understanding of the concepts, theorems, history, and applications of graph theory. This classic text, widely popular among students and instructor alike for decades, is thoroughly streamlined in this new, seventh edition, to present a text consistent with contemporary expectations"--
Cover -- Half Title -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface to the seventh edition -- About the authors -- 1. Graphs -- 1.1. Fundamentals -- 1.2. Isomorphism -- 1.3. Families of graphs -- 1.4. Operations on graphs -- 1.5. Degree sequences -- 1.6. Path and cycles -- 1.7. Connected graphs and distance -- 1.8. Trees and forests -- 1.9. Multigraphs and pseudographs -- Exercises -- 2. Digraphs -- 2.1. Fundamentals -- 2.2. Strongly connected digraphs -- 2.3. Tournaments -- 2.4. Score sequences -- Exercises -- 3. Traversability -- 3.1. Eulerian graphs and digraphs -- 3.2. Hamiltonian graphs -- 3.3. Hamiltonian digraphs -- 3.4. Highly hamiltonian graphs -- 3.5. Graph powers -- Exercises -- 4. Connectivity -- 4.1. Cut-vertices, bridges, and blocks -- 4.2. Vertex connectivity -- 4.3. Edge-connectivity -- 4.4. Menger's theorem -- Exercises -- 5. Planarity -- 5.1. Euler's formula -- 5.2. Characterizations of planarity -- 5.3. Hamiltonian planar graphs -- 5.4. The crossing number of a graph -- Exercises -- 6. Coloring -- 6.1. Vertex coloring -- 6.2. Edge coloring -- 6.3. Critical and perfect graphs -- 6.4. Maps and planar graphs -- Exercises -- 7. Flows -- 7.1. Networks -- 7.2. Max-flow min-cut theorem -- 7.3. Menger's theorems for digraphs -- 7.4. A connection to coloring -- Exercises -- 8. Factors and covers -- 8.1. Matchings and 1-factors -- 8.2. Independence and covers -- 8.3. Domination -- 8.4. Factorizations and decompositions -- 8.5. Labelings of graphs -- Exercises -- 9. Extremal graph theory -- 9.1. Avoiding a complete graph -- 9.2. Containing cycles and trees -- 9.3. Ramsey theory -- 9.4. Cages and Moore graphs -- Exercises -- 10. Embeddings -- 10.1. The genus of a graph -- 10.2. 2-Cell embeddings of graphs -- 10.3. The maximum genus of a graph -- 10.4. The graph minor theorem -- Exercises -- 11. Graphs and algebra.
Beschreibung:A Chapman & Hall book
Literaturverzeichnis: Seite 329-344
Beschreibung:x, 354 Seiten Illustrationen
ISBN:9781032133409
9781032606989

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand!