Machine learning and deep learning in ecology - from predictions to mechanistic inference:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Regensburg
im Jahr 2024
|
Schlagworte: | |
Online-Zugang: | kostenfrei kostenfrei |
Beschreibung: | 222 Seiten Illustrationen, Diagramme |
DOI: | 10.5283/epub.58680 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049792151 | ||
003 | DE-604 | ||
005 | 20240813 | ||
007 | t| | ||
008 | 240723s2024 xx a||| m||| 00||| eng d | ||
035 | |a (OCoLC)1450747987 | ||
035 | |a (DE-599)BVBBV049792151 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-473 |a DE-703 |a DE-1051 |a DE-824 |a DE-29 |a DE-12 |a DE-91 |a DE-19 |a DE-1049 |a DE-92 |a DE-739 |a DE-898 |a DE-355 |a DE-706 |a DE-20 |a DE-1102 |a DE-860 |a DE-2174 | ||
084 | |a WI 1500 |0 (DE-625)148757: |2 rvk | ||
084 | |a 570 |2 sdnb | ||
100 | 1 | |a Pichler, Maximilian Matthias |e Verfasser |4 aut | |
245 | 1 | 0 | |a Machine learning and deep learning in ecology - from predictions to mechanistic inference |c vorgelegt von Maximilian Matthias Pichler aus Mindelheim |
264 | 1 | |a Regensburg |c im Jahr 2024 | |
300 | |a 222 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
502 | |b Dissertation |c Universität Regensburg |d 2024 | ||
650 | 0 | 7 | |a Deep Learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Theoretische Ökologie |0 (DE-588)4205529-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Theoretische Ökologie |0 (DE-588)4205529-5 |D s |
689 | 0 | 1 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | 2 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 3 | |a Deep Learning |0 (DE-588)1135597375 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o 10.5283/epub.58680 |o urn:nbn:de:bvb:355-epub-586801 |
856 | 4 | 1 | |u https://doi.org/10.5283/epub.58680 |x Verlag |z kostenfrei |3 Volltext |
856 | 4 | 1 | |u https://nbn-resolving.org/urn:nbn:de:bvb:355-epub-586801 |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a ebook | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035132912 |
Datensatz im Suchindex
_version_ | 1823932153914720256 |
---|---|
adam_text | |
any_adam_object | |
author | Pichler, Maximilian Matthias |
author_facet | Pichler, Maximilian Matthias |
author_role | aut |
author_sort | Pichler, Maximilian Matthias |
author_variant | m m p mm mmp |
building | Verbundindex |
bvnumber | BV049792151 |
classification_rvk | WI 1500 |
collection | ebook |
ctrlnum | (OCoLC)1450747987 (DE-599)BVBBV049792151 |
discipline | Biologie |
doi_str_mv | 10.5283/epub.58680 |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV049792151</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240813</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">240723s2024 xx a||| m||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1450747987</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049792151</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-2174</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WI 1500</subfield><subfield code="0">(DE-625)148757:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">570</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pichler, Maximilian Matthias</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning and deep learning in ecology - from predictions to mechanistic inference</subfield><subfield code="c">vorgelegt von Maximilian Matthias Pichler aus Mindelheim</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Regensburg</subfield><subfield code="c">im Jahr 2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">222 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Universität Regensburg</subfield><subfield code="d">2024</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep Learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Theoretische Ökologie</subfield><subfield code="0">(DE-588)4205529-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Theoretische Ökologie</subfield><subfield code="0">(DE-588)4205529-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Deep Learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">10.5283/epub.58680</subfield><subfield code="o">urn:nbn:de:bvb:355-epub-586801</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.5283/epub.58680</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://nbn-resolving.org/urn:nbn:de:bvb:355-epub-586801</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035132912</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV049792151 |
illustrated | Illustrated |
indexdate | 2025-02-13T09:00:50Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035132912 |
oclc_num | 1450747987 |
open_access_boolean | 1 |
owner | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
owner_facet | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
physical | 222 Seiten Illustrationen, Diagramme |
psigel | ebook |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
record_format | marc |
spelling | Pichler, Maximilian Matthias Verfasser aut Machine learning and deep learning in ecology - from predictions to mechanistic inference vorgelegt von Maximilian Matthias Pichler aus Mindelheim Regensburg im Jahr 2024 222 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Dissertation Universität Regensburg 2024 Deep Learning (DE-588)1135597375 gnd rswk-swf Datenanalyse (DE-588)4123037-1 gnd rswk-swf Theoretische Ökologie (DE-588)4205529-5 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Theoretische Ökologie (DE-588)4205529-5 s Datenanalyse (DE-588)4123037-1 s Maschinelles Lernen (DE-588)4193754-5 s Deep Learning (DE-588)1135597375 s DE-604 Erscheint auch als Online-Ausgabe 10.5283/epub.58680 urn:nbn:de:bvb:355-epub-586801 https://doi.org/10.5283/epub.58680 Verlag kostenfrei Volltext https://nbn-resolving.org/urn:nbn:de:bvb:355-epub-586801 Resolving-System kostenfrei Volltext |
spellingShingle | Pichler, Maximilian Matthias Machine learning and deep learning in ecology - from predictions to mechanistic inference Deep Learning (DE-588)1135597375 gnd Datenanalyse (DE-588)4123037-1 gnd Theoretische Ökologie (DE-588)4205529-5 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)1135597375 (DE-588)4123037-1 (DE-588)4205529-5 (DE-588)4193754-5 (DE-588)4113937-9 |
title | Machine learning and deep learning in ecology - from predictions to mechanistic inference |
title_auth | Machine learning and deep learning in ecology - from predictions to mechanistic inference |
title_exact_search | Machine learning and deep learning in ecology - from predictions to mechanistic inference |
title_full | Machine learning and deep learning in ecology - from predictions to mechanistic inference vorgelegt von Maximilian Matthias Pichler aus Mindelheim |
title_fullStr | Machine learning and deep learning in ecology - from predictions to mechanistic inference vorgelegt von Maximilian Matthias Pichler aus Mindelheim |
title_full_unstemmed | Machine learning and deep learning in ecology - from predictions to mechanistic inference vorgelegt von Maximilian Matthias Pichler aus Mindelheim |
title_short | Machine learning and deep learning in ecology - from predictions to mechanistic inference |
title_sort | machine learning and deep learning in ecology from predictions to mechanistic inference |
topic | Deep Learning (DE-588)1135597375 gnd Datenanalyse (DE-588)4123037-1 gnd Theoretische Ökologie (DE-588)4205529-5 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Deep Learning Datenanalyse Theoretische Ökologie Maschinelles Lernen Hochschulschrift |
url | https://doi.org/10.5283/epub.58680 https://nbn-resolving.org/urn:nbn:de:bvb:355-epub-586801 |
work_keys_str_mv | AT pichlermaximilianmatthias machinelearninganddeeplearninginecologyfrompredictionstomechanisticinference |