Databricks ML in action: learn how Databricks supports the entire ML lifecycle end to end from data ingestion to the model deployment
Get to grips with autogenerating code, deploying ML algorithms, and leveraging various ML lifecycle features on the Databricks Platform, guided by best practices and reusable code for you to try, alter, and build on Key Features Build machine learning solutions faster than peers only using documenta...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham, UK
Packt Publishing
May 2024
|
Ausgabe: | First published |
Schlagworte: | |
Online-Zugang: | DE-Aug4 DE-573 DE-898 DE-860 DE-91 DE-706 Volltext |
Zusammenfassung: | Get to grips with autogenerating code, deploying ML algorithms, and leveraging various ML lifecycle features on the Databricks Platform, guided by best practices and reusable code for you to try, alter, and build on Key Features Build machine learning solutions faster than peers only using documentation Enhance or refine your expertise with tribal knowledge and concise explanations Follow along with code projects provided in GitHub to accelerate your projects Purchase of the print or Kindle book includes a free PDF eBook Book Description Discover what makes the Databricks Data Intelligence Platform the go-to choice for top-tier machine learning solutions. Databricks ML in Action presents cloud-agnostic, end-to-end examples with hands-on illustrations of executing data science, machine learning, and generative AI projects on the Databricks Platform. You'll develop expertise in Databricks' managed MLflow, Vector Search, AutoML, Unity Catalog, and Model Serving as you learn to apply them practically in everyday workflows. This Databricks book not only offers detailed code explanations but also facilitates seamless code importation for practical use. You'll discover how to leverage the open-source Databricks platform to enhance learning, boost skills, and elevate productivity with supplemental resources. By the end of this book, you'll have mastered the use of Databricks for data science, machine learning, and generative AI, enabling you to deliver outstanding data products. What you will learn Set up a workspace for a data team planning to perform data science Monitor data quality and detect drift Use autogenerated code for ML modeling and data exploration Operationalize ML with feature engineering client, AutoML, VectorSearch, Delta Live Tables, AutoLoader, and Workflows Integrate open-source and third-party applications, such as OpenAI's ChatGPT, into your AI projects Communicate insights through Databricks SQL dashboards and Delta Sharing Explore data and models through the Databricks marketplace Who this book is for This book is for machine learning engineers, data scientists, and technical managers seeking hands-on expertise in implementing and leveraging the Databricks Data Intelligence Platform and its Lakehouse architecture to create data products |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | 1 Online-Ressource (xviii, 280 Seiten) |
ISBN: | 1800564007 9781800564008 |
Internformat
MARC
LEADER | 00000nmm a22000001c 4500 | ||
---|---|---|---|
001 | BV049784720 | ||
003 | DE-604 | ||
005 | 20240814 | ||
007 | cr|uuu---uuuuu | ||
008 | 240717s2024 |||| o||u| ||||||eng d | ||
020 | |a 1800564007 |c EBook (PDF) |9 1-80056-400-7 | ||
020 | |a 9781800564008 |c EBook (PDF) |9 978-1-80056-400-8 | ||
035 | |a (ZDB-221-PDA)PACKT0007177 | ||
035 | |a (ZDB-221-PDA)9781800564008 | ||
035 | |a (OCoLC)1450750379 | ||
035 | |a (DE-599)KEP10483157X | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-860 |a DE-Aug4 |a DE-706 |a DE-898 |a DE-91 |a DE-573 | ||
100 | 1 | |a Rivera, Stephanie |e Verfasser |4 aut | |
245 | 1 | 0 | |a Databricks ML in action |b learn how Databricks supports the entire ML lifecycle end to end from data ingestion to the model deployment |c Stephanie Rivera, Anastasia Prokaieva, Amanda Baker, Hayley Horn |
264 | 1 | |a Birmingham, UK |b Packt Publishing |c May 2024 | |
300 | |a 1 Online-Ressource (xviii, 280 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
520 | 3 | |a Get to grips with autogenerating code, deploying ML algorithms, and leveraging various ML lifecycle features on the Databricks Platform, guided by best practices and reusable code for you to try, alter, and build on Key Features Build machine learning solutions faster than peers only using documentation Enhance or refine your expertise with tribal knowledge and concise explanations Follow along with code projects provided in GitHub to accelerate your projects Purchase of the print or Kindle book includes a free PDF eBook Book Description Discover what makes the Databricks Data Intelligence Platform the go-to choice for top-tier machine learning solutions. Databricks ML in Action presents cloud-agnostic, end-to-end examples with hands-on illustrations of executing data science, machine learning, and generative AI projects on the Databricks Platform. | |
520 | 3 | |a You'll develop expertise in Databricks' managed MLflow, Vector Search, AutoML, Unity Catalog, and Model Serving as you learn to apply them practically in everyday workflows. This Databricks book not only offers detailed code explanations but also facilitates seamless code importation for practical use. You'll discover how to leverage the open-source Databricks platform to enhance learning, boost skills, and elevate productivity with supplemental resources. By the end of this book, you'll have mastered the use of Databricks for data science, machine learning, and generative AI, enabling you to deliver outstanding data products. | |
520 | 3 | |a What you will learn Set up a workspace for a data team planning to perform data science Monitor data quality and detect drift Use autogenerated code for ML modeling and data exploration Operationalize ML with feature engineering client, AutoML, VectorSearch, Delta Live Tables, AutoLoader, and Workflows Integrate open-source and third-party applications, such as OpenAI's ChatGPT, into your AI projects Communicate insights through Databricks SQL dashboards and Delta Sharing Explore data and models through the Databricks marketplace Who this book is for This book is for machine learning engineers, data scientists, and technical managers seeking hands-on expertise in implementing and leveraging the Databricks Data Intelligence Platform and its Lakehouse architecture to create data products | |
653 | 0 | |a COMPUTERS / Database Administration & Management | |
653 | 0 | |a COMPUTERS / Data Science / Data Warehousing | |
653 | 0 | |a COMPUTERS / Data Science / Data Modeling & Design | |
700 | 1 | |a Prokaieva, Anastasia |e Verfasser |4 aut | |
700 | 1 | |a Baker, Amanda |e Verfasser |4 aut | |
700 | 1 | |a Horn, Hayley |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-80056-489-3 |
856 | 4 | 0 | |u https://portal.igpublish.com/iglibrary/search/PACKT0007177.html |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-221-PAG |a ZDB-221-PDA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035125621 | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0007177.html |l DE-Aug4 |p ZDB-221-PDA |q FHA_PDA_PDA |x Verlag |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0007177.html |l DE-573 |p ZDB-221-PDA |x Verlag |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0007177.html |l DE-898 |p ZDB-221-PDA |q ZDB-221-PDA24 |x Verlag |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0007177.html |l DE-860 |p ZDB-221-PDA |q FLA_PDA_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0007177.html |l DE-91 |p ZDB-221-PDA |q TUM_Paketkauf_2024 |x Verlag |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0007177.html |l DE-706 |p ZDB-221-PDA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1807410317007781888 |
---|---|
adam_text | |
any_adam_object | |
author | Rivera, Stephanie Prokaieva, Anastasia Baker, Amanda Horn, Hayley |
author_facet | Rivera, Stephanie Prokaieva, Anastasia Baker, Amanda Horn, Hayley |
author_role | aut aut aut aut |
author_sort | Rivera, Stephanie |
author_variant | s r sr a p ap a b ab h h hh |
building | Verbundindex |
bvnumber | BV049784720 |
collection | ZDB-221-PAG ZDB-221-PDA |
ctrlnum | (ZDB-221-PDA)PACKT0007177 (ZDB-221-PDA)9781800564008 (OCoLC)1450750379 (DE-599)KEP10483157X |
edition | First published |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a22000001c 4500</leader><controlfield tag="001">BV049784720</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240814</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240717s2024 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1800564007</subfield><subfield code="c">EBook (PDF)</subfield><subfield code="9">1-80056-400-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781800564008</subfield><subfield code="c">EBook (PDF)</subfield><subfield code="9">978-1-80056-400-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-221-PDA)PACKT0007177</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-221-PDA)9781800564008</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1450750379</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP10483157X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-860</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-573</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rivera, Stephanie</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Databricks ML in action</subfield><subfield code="b">learn how Databricks supports the entire ML lifecycle end to end from data ingestion to the model deployment</subfield><subfield code="c">Stephanie Rivera, Anastasia Prokaieva, Amanda Baker, Hayley Horn</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham, UK</subfield><subfield code="b">Packt Publishing</subfield><subfield code="c">May 2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 280 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Get to grips with autogenerating code, deploying ML algorithms, and leveraging various ML lifecycle features on the Databricks Platform, guided by best practices and reusable code for you to try, alter, and build on Key Features Build machine learning solutions faster than peers only using documentation Enhance or refine your expertise with tribal knowledge and concise explanations Follow along with code projects provided in GitHub to accelerate your projects Purchase of the print or Kindle book includes a free PDF eBook Book Description Discover what makes the Databricks Data Intelligence Platform the go-to choice for top-tier machine learning solutions. Databricks ML in Action presents cloud-agnostic, end-to-end examples with hands-on illustrations of executing data science, machine learning, and generative AI projects on the Databricks Platform.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">You'll develop expertise in Databricks' managed MLflow, Vector Search, AutoML, Unity Catalog, and Model Serving as you learn to apply them practically in everyday workflows. This Databricks book not only offers detailed code explanations but also facilitates seamless code importation for practical use. You'll discover how to leverage the open-source Databricks platform to enhance learning, boost skills, and elevate productivity with supplemental resources. By the end of this book, you'll have mastered the use of Databricks for data science, machine learning, and generative AI, enabling you to deliver outstanding data products.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">What you will learn Set up a workspace for a data team planning to perform data science Monitor data quality and detect drift Use autogenerated code for ML modeling and data exploration Operationalize ML with feature engineering client, AutoML, VectorSearch, Delta Live Tables, AutoLoader, and Workflows Integrate open-source and third-party applications, such as OpenAI's ChatGPT, into your AI projects Communicate insights through Databricks SQL dashboards and Delta Sharing Explore data and models through the Databricks marketplace Who this book is for This book is for machine learning engineers, data scientists, and technical managers seeking hands-on expertise in implementing and leveraging the Databricks Data Intelligence Platform and its Lakehouse architecture to create data products</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">COMPUTERS / Database Administration & Management</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">COMPUTERS / Data Science / Data Warehousing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">COMPUTERS / Data Science / Data Modeling & Design</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Prokaieva, Anastasia</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baker, Amanda</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Horn, Hayley</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-80056-489-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0007177.html</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-221-PAG</subfield><subfield code="a">ZDB-221-PDA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035125621</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0007177.html</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="q">FHA_PDA_PDA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0007177.html</subfield><subfield code="l">DE-573</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0007177.html</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="q">ZDB-221-PDA24</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0007177.html</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="q">FLA_PDA_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0007177.html</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="q">TUM_Paketkauf_2024</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0007177.html</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049784720 |
illustrated | Not Illustrated |
indexdate | 2024-08-15T00:13:18Z |
institution | BVB |
isbn | 1800564007 9781800564008 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035125621 |
oclc_num | 1450750379 |
open_access_boolean | |
owner | DE-860 DE-Aug4 DE-706 DE-898 DE-BY-UBR DE-91 DE-BY-TUM DE-573 |
owner_facet | DE-860 DE-Aug4 DE-706 DE-898 DE-BY-UBR DE-91 DE-BY-TUM DE-573 |
physical | 1 Online-Ressource (xviii, 280 Seiten) |
psigel | ZDB-221-PAG ZDB-221-PDA ZDB-221-PDA FHA_PDA_PDA ZDB-221-PDA ZDB-221-PDA24 ZDB-221-PDA FLA_PDA_Kauf ZDB-221-PDA TUM_Paketkauf_2024 |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Packt Publishing |
record_format | marc |
spelling | Rivera, Stephanie Verfasser aut Databricks ML in action learn how Databricks supports the entire ML lifecycle end to end from data ingestion to the model deployment Stephanie Rivera, Anastasia Prokaieva, Amanda Baker, Hayley Horn Birmingham, UK Packt Publishing May 2024 1 Online-Ressource (xviii, 280 Seiten) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references and index Get to grips with autogenerating code, deploying ML algorithms, and leveraging various ML lifecycle features on the Databricks Platform, guided by best practices and reusable code for you to try, alter, and build on Key Features Build machine learning solutions faster than peers only using documentation Enhance or refine your expertise with tribal knowledge and concise explanations Follow along with code projects provided in GitHub to accelerate your projects Purchase of the print or Kindle book includes a free PDF eBook Book Description Discover what makes the Databricks Data Intelligence Platform the go-to choice for top-tier machine learning solutions. Databricks ML in Action presents cloud-agnostic, end-to-end examples with hands-on illustrations of executing data science, machine learning, and generative AI projects on the Databricks Platform. You'll develop expertise in Databricks' managed MLflow, Vector Search, AutoML, Unity Catalog, and Model Serving as you learn to apply them practically in everyday workflows. This Databricks book not only offers detailed code explanations but also facilitates seamless code importation for practical use. You'll discover how to leverage the open-source Databricks platform to enhance learning, boost skills, and elevate productivity with supplemental resources. By the end of this book, you'll have mastered the use of Databricks for data science, machine learning, and generative AI, enabling you to deliver outstanding data products. What you will learn Set up a workspace for a data team planning to perform data science Monitor data quality and detect drift Use autogenerated code for ML modeling and data exploration Operationalize ML with feature engineering client, AutoML, VectorSearch, Delta Live Tables, AutoLoader, and Workflows Integrate open-source and third-party applications, such as OpenAI's ChatGPT, into your AI projects Communicate insights through Databricks SQL dashboards and Delta Sharing Explore data and models through the Databricks marketplace Who this book is for This book is for machine learning engineers, data scientists, and technical managers seeking hands-on expertise in implementing and leveraging the Databricks Data Intelligence Platform and its Lakehouse architecture to create data products COMPUTERS / Database Administration & Management COMPUTERS / Data Science / Data Warehousing COMPUTERS / Data Science / Data Modeling & Design Prokaieva, Anastasia Verfasser aut Baker, Amanda Verfasser aut Horn, Hayley Verfasser aut Erscheint auch als Druck-Ausgabe 978-1-80056-489-3 https://portal.igpublish.com/iglibrary/search/PACKT0007177.html Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Rivera, Stephanie Prokaieva, Anastasia Baker, Amanda Horn, Hayley Databricks ML in action learn how Databricks supports the entire ML lifecycle end to end from data ingestion to the model deployment |
title | Databricks ML in action learn how Databricks supports the entire ML lifecycle end to end from data ingestion to the model deployment |
title_auth | Databricks ML in action learn how Databricks supports the entire ML lifecycle end to end from data ingestion to the model deployment |
title_exact_search | Databricks ML in action learn how Databricks supports the entire ML lifecycle end to end from data ingestion to the model deployment |
title_full | Databricks ML in action learn how Databricks supports the entire ML lifecycle end to end from data ingestion to the model deployment Stephanie Rivera, Anastasia Prokaieva, Amanda Baker, Hayley Horn |
title_fullStr | Databricks ML in action learn how Databricks supports the entire ML lifecycle end to end from data ingestion to the model deployment Stephanie Rivera, Anastasia Prokaieva, Amanda Baker, Hayley Horn |
title_full_unstemmed | Databricks ML in action learn how Databricks supports the entire ML lifecycle end to end from data ingestion to the model deployment Stephanie Rivera, Anastasia Prokaieva, Amanda Baker, Hayley Horn |
title_short | Databricks ML in action |
title_sort | databricks ml in action learn how databricks supports the entire ml lifecycle end to end from data ingestion to the model deployment |
title_sub | learn how Databricks supports the entire ML lifecycle end to end from data ingestion to the model deployment |
url | https://portal.igpublish.com/iglibrary/search/PACKT0007177.html |
work_keys_str_mv | AT riverastephanie databricksmlinactionlearnhowdatabrickssupportstheentiremllifecycleendtoendfromdataingestiontothemodeldeployment AT prokaievaanastasia databricksmlinactionlearnhowdatabrickssupportstheentiremllifecycleendtoendfromdataingestiontothemodeldeployment AT bakeramanda databricksmlinactionlearnhowdatabrickssupportstheentiremllifecycleendtoendfromdataingestiontothemodeldeployment AT hornhayley databricksmlinactionlearnhowdatabrickssupportstheentiremllifecycleendtoendfromdataingestiontothemodeldeployment |