Validity, Reliability, and Significance: Empirical Methods for NLP and Data Science
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer Nature Switzerland
2024
Cham Springer |
Ausgabe: | 2nd ed. 2024 |
Schriftenreihe: | Synthesis Lectures on Human Language Technologies
|
Schlagworte: | |
Online-Zugang: | DE-573 DE-92 DE-703 URL des Erstveröffentlichers |
Beschreibung: | 1 Online-Ressource (XVII, 168 p. 70 illus., 61 illus. in color) |
ISBN: | 9783031570650 |
ISSN: | 1947-4059 |
DOI: | 10.1007/978-3-031-57065-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV049780874 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 240715s2024 |||| o||u| ||||||eng d | ||
020 | |a 9783031570650 |c Online |9 978-3-031-57065-0 | ||
024 | 7 | |a 10.1007/978-3-031-57065-0 |2 doi | |
035 | |a (ZDB-2-SXSC)9783031570650 | ||
035 | |a (OCoLC)1446260502 | ||
035 | |a (DE-599)BVBBV049780874 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-92 |a DE-573 |a DE-703 | ||
082 | 0 | |a 006.3 |2 23 | |
100 | 1 | |a Riezler, Stefan |e Verfasser |4 aut | |
245 | 1 | 0 | |a Validity, Reliability, and Significance |b Empirical Methods for NLP and Data Science |c by Stefan Riezler, Michael Hagmann |
250 | |a 2nd ed. 2024 | ||
264 | 1 | |a Cham |b Springer Nature Switzerland |c 2024 | |
264 | 1 | |a Cham |b Springer | |
300 | |a 1 Online-Ressource (XVII, 168 p. 70 illus., 61 illus. in color) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Synthesis Lectures on Human Language Technologies |x 1947-4059 | |
650 | 4 | |a Artificial Intelligence | |
650 | 4 | |a Machine Learning | |
650 | 4 | |a Probability and Statistics in Computer Science | |
650 | 4 | |a Design of Experiments | |
650 | 4 | |a Natural Language Processing (NLP) | |
650 | 4 | |a Data Science | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Mathematical statistics | |
650 | 4 | |a Experimental design | |
650 | 4 | |a Natural language processing (Computer science) | |
650 | 4 | |a Artificial intelligence / Data processing | |
700 | 1 | |a Hagmann, Michael |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-031-57064-3 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-031-57066-7 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-031-57067-4 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-031-57065-0 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-SXSC | ||
940 | 1 | |q ZDB-2-SXSC_2024 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035121855 | |
966 | e | |u https://doi.org/10.1007/978-3-031-57065-0 |l DE-573 |p ZDB-2-SXSC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-57065-0 |l DE-92 |p ZDB-2-SXSC |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-031-57065-0 |l DE-703 |p ZDB-2-SXSC |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1806142774819422208 |
---|---|
adam_text | |
any_adam_object | |
author | Riezler, Stefan Hagmann, Michael |
author_facet | Riezler, Stefan Hagmann, Michael |
author_role | aut aut |
author_sort | Riezler, Stefan |
author_variant | s r sr m h mh |
building | Verbundindex |
bvnumber | BV049780874 |
collection | ZDB-2-SXSC |
ctrlnum | (ZDB-2-SXSC)9783031570650 (OCoLC)1446260502 (DE-599)BVBBV049780874 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1007/978-3-031-57065-0 |
edition | 2nd ed. 2024 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zcb4500</leader><controlfield tag="001">BV049780874</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240715s2024 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031570650</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-031-57065-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-031-57065-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-SXSC)9783031570650</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1446260502</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049780874</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-92</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Riezler, Stefan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Validity, Reliability, and Significance</subfield><subfield code="b">Empirical Methods for NLP and Data Science</subfield><subfield code="c">by Stefan Riezler, Michael Hagmann</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd ed. 2024</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer Nature Switzerland</subfield><subfield code="c">2024</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVII, 168 p. 70 illus., 61 illus. in color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Synthesis Lectures on Human Language Technologies</subfield><subfield code="x">1947-4059</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine Learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability and Statistics in Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Design of Experiments</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural Language Processing (NLP)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Experimental design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural language processing (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence / Data processing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hagmann, Michael</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-031-57064-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-031-57066-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-031-57067-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-031-57065-0</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SXSC</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SXSC_2024</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035121855</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-57065-0</subfield><subfield code="l">DE-573</subfield><subfield code="p">ZDB-2-SXSC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-57065-0</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-2-SXSC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-031-57065-0</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-2-SXSC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049780874 |
illustrated | Not Illustrated |
indexdate | 2024-08-01T00:26:16Z |
institution | BVB |
isbn | 9783031570650 |
issn | 1947-4059 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035121855 |
oclc_num | 1446260502 |
open_access_boolean | |
owner | DE-92 DE-573 DE-703 |
owner_facet | DE-92 DE-573 DE-703 |
physical | 1 Online-Ressource (XVII, 168 p. 70 illus., 61 illus. in color) |
psigel | ZDB-2-SXSC ZDB-2-SXSC_2024 |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Springer Nature Switzerland Springer |
record_format | marc |
series2 | Synthesis Lectures on Human Language Technologies |
spelling | Riezler, Stefan Verfasser aut Validity, Reliability, and Significance Empirical Methods for NLP and Data Science by Stefan Riezler, Michael Hagmann 2nd ed. 2024 Cham Springer Nature Switzerland 2024 Cham Springer 1 Online-Ressource (XVII, 168 p. 70 illus., 61 illus. in color) txt rdacontent c rdamedia cr rdacarrier Synthesis Lectures on Human Language Technologies 1947-4059 Artificial Intelligence Machine Learning Probability and Statistics in Computer Science Design of Experiments Natural Language Processing (NLP) Data Science Artificial intelligence Machine learning Computer science / Mathematics Mathematical statistics Experimental design Natural language processing (Computer science) Artificial intelligence / Data processing Hagmann, Michael aut Erscheint auch als Druck-Ausgabe 978-3-031-57064-3 Erscheint auch als Druck-Ausgabe 978-3-031-57066-7 Erscheint auch als Druck-Ausgabe 978-3-031-57067-4 https://doi.org/10.1007/978-3-031-57065-0 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Riezler, Stefan Hagmann, Michael Validity, Reliability, and Significance Empirical Methods for NLP and Data Science Artificial Intelligence Machine Learning Probability and Statistics in Computer Science Design of Experiments Natural Language Processing (NLP) Data Science Artificial intelligence Machine learning Computer science / Mathematics Mathematical statistics Experimental design Natural language processing (Computer science) Artificial intelligence / Data processing |
title | Validity, Reliability, and Significance Empirical Methods for NLP and Data Science |
title_auth | Validity, Reliability, and Significance Empirical Methods for NLP and Data Science |
title_exact_search | Validity, Reliability, and Significance Empirical Methods for NLP and Data Science |
title_full | Validity, Reliability, and Significance Empirical Methods for NLP and Data Science by Stefan Riezler, Michael Hagmann |
title_fullStr | Validity, Reliability, and Significance Empirical Methods for NLP and Data Science by Stefan Riezler, Michael Hagmann |
title_full_unstemmed | Validity, Reliability, and Significance Empirical Methods for NLP and Data Science by Stefan Riezler, Michael Hagmann |
title_short | Validity, Reliability, and Significance |
title_sort | validity reliability and significance empirical methods for nlp and data science |
title_sub | Empirical Methods for NLP and Data Science |
topic | Artificial Intelligence Machine Learning Probability and Statistics in Computer Science Design of Experiments Natural Language Processing (NLP) Data Science Artificial intelligence Machine learning Computer science / Mathematics Mathematical statistics Experimental design Natural language processing (Computer science) Artificial intelligence / Data processing |
topic_facet | Artificial Intelligence Machine Learning Probability and Statistics in Computer Science Design of Experiments Natural Language Processing (NLP) Data Science Artificial intelligence Machine learning Computer science / Mathematics Mathematical statistics Experimental design Natural language processing (Computer science) Artificial intelligence / Data processing |
url | https://doi.org/10.1007/978-3-031-57065-0 |
work_keys_str_mv | AT riezlerstefan validityreliabilityandsignificanceempiricalmethodsfornlpanddatascience AT hagmannmichael validityreliabilityandsignificanceempiricalmethodsfornlpanddatascience |