An easy path to convex analysis and applications:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham
Springer
[2023]
|
Ausgabe: | Second edition |
Schriftenreihe: | Synthesis lectures on mathematics & statistics
|
Schlagworte: | |
Beschreibung: | This book examines the most fundamental parts of convex analysis and its applications to optimization and location problems. Accessible techniques of variational analysis are employed to clarify and simplify some basic proofs in convex analysis and to build a theory of generalized differentiation for convex functions and sets in finite dimensions. The book serves as a bridge for the readers who have just started using convex analysis to reach deeper topics in the field. Detailed proofs are presented for most of the results in the book and also included are many figures and exercises for better understanding the material. Applications provided include both the classical topics of convex optimization and important problems of modern convex optimization, convex geometry, and facility location.In addition, this book:- Explains the fundamental theory with an accessible and understandable variational geometric approach;- Provides easy access to theoretical and numerical applications to convex optimization and geometry;- Simplifies relative interiors of convex sets in developing the theory of generalized differentiation in finite dimensions Convex Sets and Functions.- Convex Separation and Some Consequences.- Convex Generalized Differentiation.- Fenchel Conjugate and Further Topics In Subdifferentiation.- Remarkable Consequences of Convexity.- Minimal Time Functions and Related Issues.- Applications To Problems of Optimization and Equilibrium.- Applications To Location Problems. |
Beschreibung: | xx, 300 Seiten Illustrationen 240 mm |
ISBN: | 9783031264603 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049754646 | ||
003 | DE-604 | ||
005 | 20240827 | ||
007 | t | ||
008 | 240624s2023 a||| |||| 00||| eng d | ||
020 | |a 9783031264603 |9 978-3-031-26460-3 | ||
024 | 3 | |a 9783031264603 | |
035 | |a (OCoLC)1409587169 | ||
035 | |a (DE-599)BVBBV049754646 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
100 | 1 | |a Morduchovič, Boris S. |e Verfasser |0 (DE-588)104316845 |4 aut | |
245 | 1 | 0 | |a An easy path to convex analysis and applications |
250 | |a Second edition | ||
264 | 1 | |a Cham |b Springer |c [2023] | |
300 | |a xx, 300 Seiten |b Illustrationen |c 240 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Synthesis lectures on mathematics & statistics | |
500 | |a This book examines the most fundamental parts of convex analysis and its applications to optimization and location problems. Accessible techniques of variational analysis are employed to clarify and simplify some basic proofs in convex analysis and to build a theory of generalized differentiation for convex functions and sets in finite dimensions. The book serves as a bridge for the readers who have just started using convex analysis to reach deeper topics in the field. Detailed proofs are presented for most of the results in the book and also included are many figures and exercises for better understanding the material. Applications provided include both the classical topics of convex optimization and important problems of modern convex optimization, convex geometry, and facility location.In addition, this book:- Explains the fundamental theory with an accessible and understandable variational geometric approach;- Provides easy access to theoretical and numerical applications to convex optimization and geometry;- Simplifies relative interiors of convex sets in developing the theory of generalized differentiation in finite dimensions | ||
500 | |a Convex Sets and Functions.- Convex Separation and Some Consequences.- Convex Generalized Differentiation.- Fenchel Conjugate and Further Topics In Subdifferentiation.- Remarkable Consequences of Convexity.- Minimal Time Functions and Related Issues.- Applications To Problems of Optimization and Equilibrium.- Applications To Location Problems. | ||
650 | 4 | |a bicssc | |
650 | 4 | |a bicssc | |
650 | 4 | |a bicssc | |
650 | 4 | |a bisacsh | |
650 | 4 | |a bisacsh | |
650 | 4 | |a bisacsh | |
650 | 4 | |a bisacsh | |
650 | 4 | |a Engineering mathematics | |
650 | 4 | |a Dynamics | |
650 | 4 | |a Nonlinear theories | |
650 | 4 | |a Mathematics | |
650 | 0 | 7 | |a Konvexe Optimierung |0 (DE-588)4137027-2 |2 gnd |9 rswk-swf |
653 | |a Hardcover, Softcover / Mathematik | ||
689 | 0 | 0 | |a Konvexe Optimierung |0 (DE-588)4137027-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Nguyen, Mau Nam |e Verfasser |0 (DE-588)1263890857 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-031-26458-0 |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035096208 |
Datensatz im Suchindex
_version_ | 1809767053545963520 |
---|---|
adam_text | |
any_adam_object | |
author | Morduchovič, Boris S. Nguyen, Mau Nam |
author_GND | (DE-588)104316845 (DE-588)1263890857 |
author_facet | Morduchovič, Boris S. Nguyen, Mau Nam |
author_role | aut aut |
author_sort | Morduchovič, Boris S. |
author_variant | b s m bs bsm m n n mn mnn |
building | Verbundindex |
bvnumber | BV049754646 |
ctrlnum | (OCoLC)1409587169 (DE-599)BVBBV049754646 |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV049754646</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240827</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">240624s2023 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031264603</subfield><subfield code="9">978-3-031-26460-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783031264603</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1409587169</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049754646</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Morduchovič, Boris S.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)104316845</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An easy path to convex analysis and applications</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xx, 300 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">240 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Synthesis lectures on mathematics & statistics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book examines the most fundamental parts of convex analysis and its applications to optimization and location problems. Accessible techniques of variational analysis are employed to clarify and simplify some basic proofs in convex analysis and to build a theory of generalized differentiation for convex functions and sets in finite dimensions. The book serves as a bridge for the readers who have just started using convex analysis to reach deeper topics in the field. Detailed proofs are presented for most of the results in the book and also included are many figures and exercises for better understanding the material. Applications provided include both the classical topics of convex optimization and important problems of modern convex optimization, convex geometry, and facility location.In addition, this book:- Explains the fundamental theory with an accessible and understandable variational geometric approach;- Provides easy access to theoretical and numerical applications to convex optimization and geometry;- Simplifies relative interiors of convex sets in developing the theory of generalized differentiation in finite dimensions</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Convex Sets and Functions.- Convex Separation and Some Consequences.- Convex Generalized Differentiation.- Fenchel Conjugate and Further Topics In Subdifferentiation.- Remarkable Consequences of Convexity.- Minimal Time Functions and Related Issues.- Applications To Problems of Optimization and Equilibrium.- Applications To Location Problems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear theories</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Optimierung</subfield><subfield code="0">(DE-588)4137027-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hardcover, Softcover / Mathematik</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Konvexe Optimierung</subfield><subfield code="0">(DE-588)4137027-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nguyen, Mau Nam</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1263890857</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-031-26458-0</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035096208</subfield></datafield></record></collection> |
id | DE-604.BV049754646 |
illustrated | Illustrated |
indexdate | 2024-09-10T00:32:37Z |
institution | BVB |
isbn | 9783031264603 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035096208 |
oclc_num | 1409587169 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | xx, 300 Seiten Illustrationen 240 mm |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Springer |
record_format | marc |
series2 | Synthesis lectures on mathematics & statistics |
spelling | Morduchovič, Boris S. Verfasser (DE-588)104316845 aut An easy path to convex analysis and applications Second edition Cham Springer [2023] xx, 300 Seiten Illustrationen 240 mm txt rdacontent n rdamedia nc rdacarrier Synthesis lectures on mathematics & statistics This book examines the most fundamental parts of convex analysis and its applications to optimization and location problems. Accessible techniques of variational analysis are employed to clarify and simplify some basic proofs in convex analysis and to build a theory of generalized differentiation for convex functions and sets in finite dimensions. The book serves as a bridge for the readers who have just started using convex analysis to reach deeper topics in the field. Detailed proofs are presented for most of the results in the book and also included are many figures and exercises for better understanding the material. Applications provided include both the classical topics of convex optimization and important problems of modern convex optimization, convex geometry, and facility location.In addition, this book:- Explains the fundamental theory with an accessible and understandable variational geometric approach;- Provides easy access to theoretical and numerical applications to convex optimization and geometry;- Simplifies relative interiors of convex sets in developing the theory of generalized differentiation in finite dimensions Convex Sets and Functions.- Convex Separation and Some Consequences.- Convex Generalized Differentiation.- Fenchel Conjugate and Further Topics In Subdifferentiation.- Remarkable Consequences of Convexity.- Minimal Time Functions and Related Issues.- Applications To Problems of Optimization and Equilibrium.- Applications To Location Problems. bicssc bisacsh Engineering mathematics Dynamics Nonlinear theories Mathematics Konvexe Optimierung (DE-588)4137027-2 gnd rswk-swf Hardcover, Softcover / Mathematik Konvexe Optimierung (DE-588)4137027-2 s DE-604 Nguyen, Mau Nam Verfasser (DE-588)1263890857 aut Erscheint auch als Online-Ausgabe 978-3-031-26458-0 |
spellingShingle | Morduchovič, Boris S. Nguyen, Mau Nam An easy path to convex analysis and applications bicssc bisacsh Engineering mathematics Dynamics Nonlinear theories Mathematics Konvexe Optimierung (DE-588)4137027-2 gnd |
subject_GND | (DE-588)4137027-2 |
title | An easy path to convex analysis and applications |
title_auth | An easy path to convex analysis and applications |
title_exact_search | An easy path to convex analysis and applications |
title_full | An easy path to convex analysis and applications |
title_fullStr | An easy path to convex analysis and applications |
title_full_unstemmed | An easy path to convex analysis and applications |
title_short | An easy path to convex analysis and applications |
title_sort | an easy path to convex analysis and applications |
topic | bicssc bisacsh Engineering mathematics Dynamics Nonlinear theories Mathematics Konvexe Optimierung (DE-588)4137027-2 gnd |
topic_facet | bicssc bisacsh Engineering mathematics Dynamics Nonlinear theories Mathematics Konvexe Optimierung |
work_keys_str_mv | AT morduchovicboriss aneasypathtoconvexanalysisandapplications AT nguyenmaunam aneasypathtoconvexanalysisandapplications |