A textbook of algebraic number theory:
This self-contained and comprehensive textbook of algebraic number theory is useful for advanced undergraduate and graduate students of mathematics. The book discusses proofs of almost all basic significant theorems of algebraic number theory including Dedekind’s theorem on splitting of primes, Diri...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Singapore
Springer
[2022]
|
Schriftenreihe: | Unitext - Matematica per il 3 + 2
volume 135 |
Schlagworte: | |
Zusammenfassung: | This self-contained and comprehensive textbook of algebraic number theory is useful for advanced undergraduate and graduate students of mathematics. The book discusses proofs of almost all basic significant theorems of algebraic number theory including Dedekind’s theorem on splitting of primes, Dirichlet’s unit theorem, Minkowski’s convex body theorem, Dedekind’s discriminant theorem, Hermite’s theorem on discriminant, Dirichlet’s class number formula, and Dirichlet’s theorem on primes in arithmetic progressions. A few research problems arising out of these results are mentioned together with the progress made in the direction of each problem. Following the classical approach of Dedekind’s theory of ideals, the book aims at arousing the reader’s interest in the current research being held in the subject area. It not only proves basic results but pairs them with recent developments, making the book relevant and thought-provoking. Historical notes are given at various places. Featured with numerous related exercises and examples, this book is of significant value to students and researchers associated with the field. The book also is suitable for independent study. The only prerequisite is basic knowledge of abstract algebra and elementary number theory. |
Beschreibung: | Literaturverzeichnis Seite 245-247 |
Beschreibung: | xviii, 252 Seiten Illustrationen |
ISBN: | 9789811691492 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV049750651 | ||
003 | DE-604 | ||
007 | t | ||
008 | 240620s2022 a||| |||| 00||| eng d | ||
020 | |a 9789811691492 |9 978-981-16-9149-2 | ||
024 | 7 | |a 10.1007/978-981-16-9150-8 |2 doi | |
035 | |a (OCoLC)1338036728 | ||
035 | |a (DE-599)KXP181252949X | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-573 | ||
084 | |a SK 180 |0 (DE-625)143222: |0 (DE-603)412307081 |2 rvk | ||
100 | 1 | |a Khanduja, Sudesh Kaur |e Verfasser |4 aut | |
245 | 1 | 0 | |a A textbook of algebraic number theory |c Sudesh Kaur Khanduja |
264 | 1 | |a Singapore |b Springer |c [2022] | |
300 | |a xviii, 252 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Unitext - Matematica per il 3 + 2 |v volume 135 | |
500 | |a Literaturverzeichnis Seite 245-247 | ||
520 | 3 | |a This self-contained and comprehensive textbook of algebraic number theory is useful for advanced undergraduate and graduate students of mathematics. The book discusses proofs of almost all basic significant theorems of algebraic number theory including Dedekind’s theorem on splitting of primes, Dirichlet’s unit theorem, Minkowski’s convex body theorem, Dedekind’s discriminant theorem, Hermite’s theorem on discriminant, Dirichlet’s class number formula, and Dirichlet’s theorem on primes in arithmetic progressions. A few research problems arising out of these results are mentioned together with the progress made in the direction of each problem. Following the classical approach of Dedekind’s theory of ideals, the book aims at arousing the reader’s interest in the current research being held in the subject area. It not only proves basic results but pairs them with recent developments, making the book relevant and thought-provoking. Historical notes are given at various places. Featured with numerous related exercises and examples, this book is of significant value to students and researchers associated with the field. The book also is suitable for independent study. The only prerequisite is basic knowledge of abstract algebra and elementary number theory. | |
650 | 0 | 7 | |a Algebra |0 (DE-588)4001156-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zahlentheorie |0 (DE-588)4067277-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Algebra |0 (DE-588)4001156-2 |D s |
689 | 0 | 1 | |a Zahlentheorie |0 (DE-588)4067277-3 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |a Khanduja, Sudesh Kaur |t A Textbook of Algebraic Number Theory |b 1st ed. 2022. |d Singapore : Springer Nature Singapore, 2022 |h 1 Online-Ressource(XVIII, 253 p.) |z 978-981-16-9150-8 |
830 | 0 | |a Unitext - Matematica per il 3 + 2 |v volume 135 |w (DE-604)BV047304938 |9 135 |
Datensatz im Suchindex
_version_ | 1805083964902211584 |
---|---|
adam_text | |
any_adam_object | |
author | Khanduja, Sudesh Kaur |
author_facet | Khanduja, Sudesh Kaur |
author_role | aut |
author_sort | Khanduja, Sudesh Kaur |
author_variant | s k k sk skk |
building | Verbundindex |
bvnumber | BV049750651 |
classification_rvk | SK 180 |
ctrlnum | (OCoLC)1338036728 (DE-599)KXP181252949X |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV049750651</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">240620s2022 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811691492</subfield><subfield code="9">978-981-16-9149-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-981-16-9150-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1338036728</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP181252949X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="0">(DE-603)412307081</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khanduja, Sudesh Kaur</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A textbook of algebraic number theory</subfield><subfield code="c">Sudesh Kaur Khanduja</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">Springer</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xviii, 252 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Unitext - Matematica per il 3 + 2</subfield><subfield code="v">volume 135</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverzeichnis Seite 245-247</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This self-contained and comprehensive textbook of algebraic number theory is useful for advanced undergraduate and graduate students of mathematics. The book discusses proofs of almost all basic significant theorems of algebraic number theory including Dedekind’s theorem on splitting of primes, Dirichlet’s unit theorem, Minkowski’s convex body theorem, Dedekind’s discriminant theorem, Hermite’s theorem on discriminant, Dirichlet’s class number formula, and Dirichlet’s theorem on primes in arithmetic progressions. A few research problems arising out of these results are mentioned together with the progress made in the direction of each problem. Following the classical approach of Dedekind’s theory of ideals, the book aims at arousing the reader’s interest in the current research being held in the subject area. It not only proves basic results but pairs them with recent developments, making the book relevant and thought-provoking. Historical notes are given at various places. Featured with numerous related exercises and examples, this book is of significant value to students and researchers associated with the field. The book also is suitable for independent study. The only prerequisite is basic knowledge of abstract algebra and elementary number theory.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebra</subfield><subfield code="0">(DE-588)4001156-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="a">Khanduja, Sudesh Kaur</subfield><subfield code="t">A Textbook of Algebraic Number Theory</subfield><subfield code="b">1st ed. 2022.</subfield><subfield code="d">Singapore : Springer Nature Singapore, 2022</subfield><subfield code="h">1 Online-Ressource(XVIII, 253 p.)</subfield><subfield code="z">978-981-16-9150-8</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Unitext - Matematica per il 3 + 2</subfield><subfield code="v">volume 135</subfield><subfield code="w">(DE-604)BV047304938</subfield><subfield code="9">135</subfield></datafield></record></collection> |
id | DE-604.BV049750651 |
illustrated | Illustrated |
indexdate | 2024-07-20T07:56:56Z |
institution | BVB |
isbn | 9789811691492 |
language | English |
oclc_num | 1338036728 |
open_access_boolean | |
owner | DE-573 |
owner_facet | DE-573 |
physical | xviii, 252 Seiten Illustrationen |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Springer |
record_format | marc |
series | Unitext - Matematica per il 3 + 2 |
series2 | Unitext - Matematica per il 3 + 2 |
spelling | Khanduja, Sudesh Kaur Verfasser aut A textbook of algebraic number theory Sudesh Kaur Khanduja Singapore Springer [2022] xviii, 252 Seiten Illustrationen txt rdacontent n rdamedia nc rdacarrier Unitext - Matematica per il 3 + 2 volume 135 Literaturverzeichnis Seite 245-247 This self-contained and comprehensive textbook of algebraic number theory is useful for advanced undergraduate and graduate students of mathematics. The book discusses proofs of almost all basic significant theorems of algebraic number theory including Dedekind’s theorem on splitting of primes, Dirichlet’s unit theorem, Minkowski’s convex body theorem, Dedekind’s discriminant theorem, Hermite’s theorem on discriminant, Dirichlet’s class number formula, and Dirichlet’s theorem on primes in arithmetic progressions. A few research problems arising out of these results are mentioned together with the progress made in the direction of each problem. Following the classical approach of Dedekind’s theory of ideals, the book aims at arousing the reader’s interest in the current research being held in the subject area. It not only proves basic results but pairs them with recent developments, making the book relevant and thought-provoking. Historical notes are given at various places. Featured with numerous related exercises and examples, this book is of significant value to students and researchers associated with the field. The book also is suitable for independent study. The only prerequisite is basic knowledge of abstract algebra and elementary number theory. Algebra (DE-588)4001156-2 gnd rswk-swf Zahlentheorie (DE-588)4067277-3 gnd rswk-swf Algebra (DE-588)4001156-2 s Zahlentheorie (DE-588)4067277-3 s DE-604 Erscheint auch als Online-Ausgabe Khanduja, Sudesh Kaur A Textbook of Algebraic Number Theory 1st ed. 2022. Singapore : Springer Nature Singapore, 2022 1 Online-Ressource(XVIII, 253 p.) 978-981-16-9150-8 Unitext - Matematica per il 3 + 2 volume 135 (DE-604)BV047304938 135 |
spellingShingle | Khanduja, Sudesh Kaur A textbook of algebraic number theory Unitext - Matematica per il 3 + 2 Algebra (DE-588)4001156-2 gnd Zahlentheorie (DE-588)4067277-3 gnd |
subject_GND | (DE-588)4001156-2 (DE-588)4067277-3 |
title | A textbook of algebraic number theory |
title_auth | A textbook of algebraic number theory |
title_exact_search | A textbook of algebraic number theory |
title_full | A textbook of algebraic number theory Sudesh Kaur Khanduja |
title_fullStr | A textbook of algebraic number theory Sudesh Kaur Khanduja |
title_full_unstemmed | A textbook of algebraic number theory Sudesh Kaur Khanduja |
title_short | A textbook of algebraic number theory |
title_sort | a textbook of algebraic number theory |
topic | Algebra (DE-588)4001156-2 gnd Zahlentheorie (DE-588)4067277-3 gnd |
topic_facet | Algebra Zahlentheorie |
volume_link | (DE-604)BV047304938 |
work_keys_str_mv | AT khandujasudeshkaur atextbookofalgebraicnumbertheory |