ToonCrafter: Generative Cartoon Interpolation
We introduce ToonCrafter, a novel approach that transcends traditional correspondence-based cartoon video interpolation, paving the way for generative interpolation. Traditional methods, that implicitly assume linear motion and the absence of complicated phenomena like dis-occlusion, often struggle...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cornell University
Ithaca, NY
2024
|
Schlagworte: | |
Online-Zugang: | kostenfrei |
Zusammenfassung: | We introduce ToonCrafter, a novel approach that transcends traditional correspondence-based cartoon video interpolation, paving the way for generative interpolation. Traditional methods, that implicitly assume linear motion and the absence of complicated phenomena like dis-occlusion, often struggle with the exaggerated non-linear and large motions with occlusion commonly found in cartoons, resulting in implausible or even failed interpolation results. To overcome these limitations, we explore the potential of adapting live-action video priors to better suit cartoon interpolation within a generative framework. ToonCrafter effectively addresses the challenges faced when applying live-action video motion priors to generative cartoon interpolation. First, we design a toon rectification learning strategy that seamlessly adapts live-action video priors to the cartoon domain, resolving the domain gap and content leakage issues. Next, we introduce a dual-reference-based 3D decoder to compensate for lost details due to the highly compressed latent prior spaces, ensuring the preservation of fine details in interpolation results. Finally, we design a flexible sketch encoder that empowers users with interactive control over the interpolation results. Experimental results demonstrate that our proposed method not only produces visually convincing and more natural dynamics, but also effectively handles dis-occlusion. The comparative evaluation demonstrates the notable superiority of our approach over existing competitors Comment: Project page: https://doubiiu.github.io/projects/ToonCrafter |
Beschreibung: | 1 Online-Ressource (12 Seiten) Illustrationen, Diagramme |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV049748961 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 240620s2024 |||| o||u| ||||||eng d | ||
024 | 7 | |a 10.48550/arXiv.2405.17933 |2 doi | |
035 | |a (OCoLC)1443591679 | ||
035 | |a (DE-599)BVBBV049748961 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-188 | ||
084 | |a ST 302 |0 (DE-625)143652: |2 rvk | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
100 | 1 | |a Xing, Jinbo |e Verfasser |4 aut | |
245 | 1 | 0 | |a ToonCrafter |b Generative Cartoon Interpolation |c Jinbo Xing, Hanyuan Liu, Menghan Xia, Yong Zhang, Xintao Wang, Ying Shan, Tien-Tsin Wong |
264 | 1 | |a Cornell University |b Ithaca, NY |c 2024 | |
300 | |a 1 Online-Ressource (12 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | 3 | |a We introduce ToonCrafter, a novel approach that transcends traditional correspondence-based cartoon video interpolation, paving the way for generative interpolation. Traditional methods, that implicitly assume linear motion and the absence of complicated phenomena like dis-occlusion, often struggle with the exaggerated non-linear and large motions with occlusion commonly found in cartoons, resulting in implausible or even failed interpolation results. To overcome these limitations, we explore the potential of adapting live-action video priors to better suit cartoon interpolation within a generative framework. ToonCrafter effectively addresses the challenges faced when applying live-action video motion priors to generative cartoon interpolation. First, we design a toon rectification learning strategy that seamlessly adapts live-action video priors to the cartoon domain, resolving the domain gap and content leakage issues. Next, we introduce a dual-reference-based 3D decoder to compensate for lost details due to the highly compressed latent prior spaces, ensuring the preservation of fine details in interpolation results. Finally, we design a flexible sketch encoder that empowers users with interactive control over the interpolation results. Experimental results demonstrate that our proposed method not only produces visually convincing and more natural dynamics, but also effectively handles dis-occlusion. The comparative evaluation demonstrates the notable superiority of our approach over existing competitors | |
520 | 3 | |a Comment: Project page: https://doubiiu.github.io/projects/ToonCrafter | |
650 | 0 | 7 | |a Cartoon |0 (DE-588)4147365-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Anime |0 (DE-588)1041601824 |2 gnd |9 rswk-swf |
653 | |a generative künstliche Intelligenz | ||
653 | |a Computer Science - Computer Vision and Pattern Recognition | ||
653 | |a Generative Artificial Intelligence | ||
653 | |a Computer Vision and Pattern Recognitio | ||
653 | |a Generative Interpolation | ||
653 | |a Sketch Encoder | ||
689 | 0 | 0 | |a Anime |0 (DE-588)1041601824 |D s |
689 | 0 | 1 | |a Cartoon |0 (DE-588)4147365-6 |D s |
689 | 0 | 2 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Liu, Hanyuan |e Verfasser |4 aut | |
700 | 1 | |a Xia, Menghan |e Verfasser |4 aut | |
856 | 4 | 0 | |u http://arxiv.org/abs/2405.17933 |x Archivierung |z kostenfrei |
Datensatz im Suchindex
_version_ | 1805083962754727936 |
---|---|
adam_text | |
any_adam_object | |
author | Xing, Jinbo Liu, Hanyuan Xia, Menghan |
author_facet | Xing, Jinbo Liu, Hanyuan Xia, Menghan |
author_role | aut aut aut |
author_sort | Xing, Jinbo |
author_variant | j x jx h l hl m x mx |
building | Verbundindex |
bvnumber | BV049748961 |
classification_rvk | ST 302 ST 300 |
ctrlnum | (OCoLC)1443591679 (DE-599)BVBBV049748961 |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000 c 4500</leader><controlfield tag="001">BV049748961</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240620s2024 |||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.48550/arXiv.2405.17933</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1443591679</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049748961</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xing, Jinbo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">ToonCrafter</subfield><subfield code="b">Generative Cartoon Interpolation</subfield><subfield code="c">Jinbo Xing, Hanyuan Liu, Menghan Xia, Yong Zhang, Xintao Wang, Ying Shan, Tien-Tsin Wong</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cornell University</subfield><subfield code="b">Ithaca, NY</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (12 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">We introduce ToonCrafter, a novel approach that transcends traditional correspondence-based cartoon video interpolation, paving the way for generative interpolation. Traditional methods, that implicitly assume linear motion and the absence of complicated phenomena like dis-occlusion, often struggle with the exaggerated non-linear and large motions with occlusion commonly found in cartoons, resulting in implausible or even failed interpolation results. To overcome these limitations, we explore the potential of adapting live-action video priors to better suit cartoon interpolation within a generative framework. ToonCrafter effectively addresses the challenges faced when applying live-action video motion priors to generative cartoon interpolation. First, we design a toon rectification learning strategy that seamlessly adapts live-action video priors to the cartoon domain, resolving the domain gap and content leakage issues. Next, we introduce a dual-reference-based 3D decoder to compensate for lost details due to the highly compressed latent prior spaces, ensuring the preservation of fine details in interpolation results. Finally, we design a flexible sketch encoder that empowers users with interactive control over the interpolation results. Experimental results demonstrate that our proposed method not only produces visually convincing and more natural dynamics, but also effectively handles dis-occlusion. The comparative evaluation demonstrates the notable superiority of our approach over existing competitors</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Comment: Project page: https://doubiiu.github.io/projects/ToonCrafter</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Cartoon</subfield><subfield code="0">(DE-588)4147365-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anime</subfield><subfield code="0">(DE-588)1041601824</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">generative künstliche Intelligenz</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Computer Science - Computer Vision and Pattern Recognition</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Generative Artificial Intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Computer Vision and Pattern Recognitio</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Generative Interpolation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Sketch Encoder</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Anime</subfield><subfield code="0">(DE-588)1041601824</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Cartoon</subfield><subfield code="0">(DE-588)4147365-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Hanyuan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xia, Menghan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://arxiv.org/abs/2405.17933</subfield><subfield code="x">Archivierung</subfield><subfield code="z">kostenfrei</subfield></datafield></record></collection> |
id | DE-604.BV049748961 |
illustrated | Not Illustrated |
indexdate | 2024-07-20T07:56:54Z |
institution | BVB |
language | English |
oclc_num | 1443591679 |
open_access_boolean | 1 |
owner | DE-188 |
owner_facet | DE-188 |
physical | 1 Online-Ressource (12 Seiten) Illustrationen, Diagramme |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Ithaca, NY |
record_format | marc |
spelling | Xing, Jinbo Verfasser aut ToonCrafter Generative Cartoon Interpolation Jinbo Xing, Hanyuan Liu, Menghan Xia, Yong Zhang, Xintao Wang, Ying Shan, Tien-Tsin Wong Cornell University Ithaca, NY 2024 1 Online-Ressource (12 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier We introduce ToonCrafter, a novel approach that transcends traditional correspondence-based cartoon video interpolation, paving the way for generative interpolation. Traditional methods, that implicitly assume linear motion and the absence of complicated phenomena like dis-occlusion, often struggle with the exaggerated non-linear and large motions with occlusion commonly found in cartoons, resulting in implausible or even failed interpolation results. To overcome these limitations, we explore the potential of adapting live-action video priors to better suit cartoon interpolation within a generative framework. ToonCrafter effectively addresses the challenges faced when applying live-action video motion priors to generative cartoon interpolation. First, we design a toon rectification learning strategy that seamlessly adapts live-action video priors to the cartoon domain, resolving the domain gap and content leakage issues. Next, we introduce a dual-reference-based 3D decoder to compensate for lost details due to the highly compressed latent prior spaces, ensuring the preservation of fine details in interpolation results. Finally, we design a flexible sketch encoder that empowers users with interactive control over the interpolation results. Experimental results demonstrate that our proposed method not only produces visually convincing and more natural dynamics, but also effectively handles dis-occlusion. The comparative evaluation demonstrates the notable superiority of our approach over existing competitors Comment: Project page: https://doubiiu.github.io/projects/ToonCrafter Cartoon (DE-588)4147365-6 gnd rswk-swf Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf Anime (DE-588)1041601824 gnd rswk-swf generative künstliche Intelligenz Computer Science - Computer Vision and Pattern Recognition Generative Artificial Intelligence Computer Vision and Pattern Recognitio Generative Interpolation Sketch Encoder Anime (DE-588)1041601824 s Cartoon (DE-588)4147365-6 s Künstliche Intelligenz (DE-588)4033447-8 s DE-604 Liu, Hanyuan Verfasser aut Xia, Menghan Verfasser aut http://arxiv.org/abs/2405.17933 Archivierung kostenfrei |
spellingShingle | Xing, Jinbo Liu, Hanyuan Xia, Menghan ToonCrafter Generative Cartoon Interpolation Cartoon (DE-588)4147365-6 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Anime (DE-588)1041601824 gnd |
subject_GND | (DE-588)4147365-6 (DE-588)4033447-8 (DE-588)1041601824 |
title | ToonCrafter Generative Cartoon Interpolation |
title_auth | ToonCrafter Generative Cartoon Interpolation |
title_exact_search | ToonCrafter Generative Cartoon Interpolation |
title_full | ToonCrafter Generative Cartoon Interpolation Jinbo Xing, Hanyuan Liu, Menghan Xia, Yong Zhang, Xintao Wang, Ying Shan, Tien-Tsin Wong |
title_fullStr | ToonCrafter Generative Cartoon Interpolation Jinbo Xing, Hanyuan Liu, Menghan Xia, Yong Zhang, Xintao Wang, Ying Shan, Tien-Tsin Wong |
title_full_unstemmed | ToonCrafter Generative Cartoon Interpolation Jinbo Xing, Hanyuan Liu, Menghan Xia, Yong Zhang, Xintao Wang, Ying Shan, Tien-Tsin Wong |
title_short | ToonCrafter |
title_sort | tooncrafter generative cartoon interpolation |
title_sub | Generative Cartoon Interpolation |
topic | Cartoon (DE-588)4147365-6 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Anime (DE-588)1041601824 gnd |
topic_facet | Cartoon Künstliche Intelligenz Anime |
url | http://arxiv.org/abs/2405.17933 |
work_keys_str_mv | AT xingjinbo tooncraftergenerativecartooninterpolation AT liuhanyuan tooncraftergenerativecartooninterpolation AT xiamenghan tooncraftergenerativecartooninterpolation |