Machine learning and computer vision for renewable energy:

As the world grapples with the urgent need for sustainable energy solutions, the limitations of traditional approaches to renewable energy forecasting become increasingly evident. The demand for more accurate predictions in net load forecasting, line loss predictions, and the seamless integration of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Acharjya, Pinaki Pratim (HerausgeberIn), Koley, Santanu 1981- (HerausgeberIn), Barman, Subhabrata 1974- (HerausgeberIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Hershey PA, USA IGI Global [2024]
Schriftenreihe:Advances in environmental engineering and green technologies (AEEGT) book series
Schlagworte:
Online-Zugang:DE-898
DE-91
DE-1050
URL des Erstveröffentlichers
Zusammenfassung:As the world grapples with the urgent need for sustainable energy solutions, the limitations of traditional approaches to renewable energy forecasting become increasingly evident. The demand for more accurate predictions in net load forecasting, line loss predictions, and the seamless integration of hybrid solar and battery storage systems is more critical than ever. In response to this challenge, advanced Artificial intelligence (AI) techniques are emerging as a solution, promising to revolutionize the renewable energy landscape. Machine learning and computer vision for renewable energy presents a deep exploration of AI modeling, analysis, performance prediction, and control approaches dedicated to overcoming the pressing issues in renewable energy systems.
Beschreibung:1 Online-Ressource (xviii, 333 Seiten) Illustrationen
ISBN:9798369323564
DOI:10.4018/979-8-3693-2355-7

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen