The mathematics of machine learning: lectures on supervised methods and beyond
This book is an introduction to machine learning, with a strong focus on the mathematics behind the standard algorithms and techniques in the field, aimed at senior undergraduates and early graduate students of Mathematics. There is a focus on well-known supervised machine learning algorithms, detai...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2024]
© 2024 |
Schriftenreihe: | De Gruyter Textbook
|
Schlagworte: | |
Online-Zugang: | DE-1043 DE-1046 DE-858 DE-898 DE-859 DE-860 DE-91 DE-703 DE-20 DE-739 Volltext |
Zusammenfassung: | This book is an introduction to machine learning, with a strong focus on the mathematics behind the standard algorithms and techniques in the field, aimed at senior undergraduates and early graduate students of Mathematics. There is a focus on well-known supervised machine learning algorithms, detailing the existing theory to provide some theoretical guarantees, featuring intuitive proofs and exposition of the material in a concise and precise manner. A broad set of topics is covered, giving an overview of the field. A summary of the topics covered is: statistical learning theory, approximation theory, linear models, kernel methods, Gaussian processes, deep neural networks, ensemble methods and unsupervised learning techniques, such as clustering and dimensionality reduction. This book is suited for students who are interested in entering the field, by preparing them to master the standard tools in Machine Learning. The reader will be equipped to understand the main theoretical questions of the current research and to engage with the field |
Beschreibung: | 1 Online-Ressource (IX, 199 Seiten) Illustrationen, Diagramme |
ISBN: | 9783111288994 9783111289816 |
DOI: | 10.1515/9783111288994 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049730684 | ||
003 | DE-604 | ||
005 | 20250402 | ||
007 | cr|uuu---uuuuu | ||
008 | 240605s2024 xx a||| o|||| 00||| eng d | ||
020 | |a 9783111288994 |c Online, PDF |9 978-3-11-128899-4 | ||
020 | |a 9783111289816 |c Online, EPUB |9 978-3-11-128981-6 | ||
024 | 7 | |a 10.1515/9783111288994 |2 doi | |
035 | |a (ZDB-23-DGG)9783111288994 | ||
035 | |a (OCoLC)1437887796 | ||
035 | |a (DE-599)BVBBV049730684 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1046 |a DE-858 |a DE-859 |a DE-860 |a DE-739 |a DE-703 |a DE-11 |a DE-91 |a DE-898 |a DE-20 | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Han Veiga, Maria |e Verfasser |0 (DE-588)1332666396 |4 aut | |
245 | 1 | 0 | |a The mathematics of machine learning |b lectures on supervised methods and beyond |c Maria Han Veiga and François Gaston Ged |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2024] | |
264 | 1 | |c © 2024 | |
300 | |a 1 Online-Ressource (IX, 199 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter Textbook | |
520 | |a This book is an introduction to machine learning, with a strong focus on the mathematics behind the standard algorithms and techniques in the field, aimed at senior undergraduates and early graduate students of Mathematics. There is a focus on well-known supervised machine learning algorithms, detailing the existing theory to provide some theoretical guarantees, featuring intuitive proofs and exposition of the material in a concise and precise manner. A broad set of topics is covered, giving an overview of the field. A summary of the topics covered is: statistical learning theory, approximation theory, linear models, kernel methods, Gaussian processes, deep neural networks, ensemble methods and unsupervised learning techniques, such as clustering and dimensionality reduction. This book is suited for students who are interested in entering the field, by preparing them to master the standard tools in Machine Learning. The reader will be equipped to understand the main theoretical questions of the current research and to engage with the field | ||
650 | 4 | |a Kernel-Methoden | |
650 | 4 | |a Neuronale Netze | |
650 | 4 | |a Statistisches Lernen | |
650 | 4 | |a überwachtes Lernen | |
650 | 7 | |a MATHEMATICS / Applied |2 bisacsh | |
650 | 0 | 7 | |a Angewandte Mathematik |0 (DE-588)4142443-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Angewandte Mathematik |0 (DE-588)4142443-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Ged, François |e Verfasser |0 (DE-588)1332667236 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-11-128847-5 |w (DE-604)BV049748196 |
856 | 4 | 0 | |u https://doi.org/10.1515/9783111288994 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
912 | |a ZDB-23-DMA | ||
940 | 1 | |q ZDB-23-DMA24 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-035072885 | |
966 | e | |u https://doi.org/10.1515/9783111288994 |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111288994 |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111288994 |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111288994 |l DE-898 |p ZDB-23-DMA |q ZDB-23-DMA24 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111288994 |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111288994 |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111288994 |l DE-91 |p ZDB-23-DMA |q TUM_Paketkauf_2024 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111288994 |l DE-703 |p ZDB-23-DMA |q ZDB-23-DMA24 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111288994 |l DE-20 |p ZDB-23-DMA |q UBW_Paketkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111288994 |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1828277023765692416 |
---|---|
adam_text | |
any_adam_object | |
author | Han Veiga, Maria Ged, François |
author_GND | (DE-588)1332666396 (DE-588)1332667236 |
author_facet | Han Veiga, Maria Ged, François |
author_role | aut aut |
author_sort | Han Veiga, Maria |
author_variant | v m h vm vmh f g fg |
building | Verbundindex |
bvnumber | BV049730684 |
classification_rvk | ST 300 |
classification_tum | MAT 000 |
collection | ZDB-23-DGG ZDB-23-DMA |
ctrlnum | (ZDB-23-DGG)9783111288994 (OCoLC)1437887796 (DE-599)BVBBV049730684 |
discipline | Informatik Mathematik |
doi_str_mv | 10.1515/9783111288994 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV049730684</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20250402</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240605s2024 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783111288994</subfield><subfield code="c">Online, PDF</subfield><subfield code="9">978-3-11-128899-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783111289816</subfield><subfield code="c">Online, EPUB</subfield><subfield code="9">978-3-11-128981-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783111288994</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783111288994</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1437887796</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049730684</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Han Veiga, Maria</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1332666396</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The mathematics of machine learning</subfield><subfield code="b">lectures on supervised methods and beyond</subfield><subfield code="c">Maria Han Veiga and François Gaston Ged</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">© 2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 199 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter Textbook</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is an introduction to machine learning, with a strong focus on the mathematics behind the standard algorithms and techniques in the field, aimed at senior undergraduates and early graduate students of Mathematics. There is a focus on well-known supervised machine learning algorithms, detailing the existing theory to provide some theoretical guarantees, featuring intuitive proofs and exposition of the material in a concise and precise manner. A broad set of topics is covered, giving an overview of the field. A summary of the topics covered is: statistical learning theory, approximation theory, linear models, kernel methods, Gaussian processes, deep neural networks, ensemble methods and unsupervised learning techniques, such as clustering and dimensionality reduction. This book is suited for students who are interested in entering the field, by preparing them to master the standard tools in Machine Learning. The reader will be equipped to understand the main theoretical questions of the current research and to engage with the field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kernel-Methoden</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neuronale Netze</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistisches Lernen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">überwachtes Lernen</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Applied</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Angewandte Mathematik</subfield><subfield code="0">(DE-588)4142443-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Angewandte Mathematik</subfield><subfield code="0">(DE-588)4142443-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ged, François</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1332667236</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-11-128847-5</subfield><subfield code="w">(DE-604)BV049748196</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783111288994</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-DMA24</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-035072885</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111288994</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111288994</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111288994</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111288994</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA24</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111288994</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111288994</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111288994</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">TUM_Paketkauf_2024</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111288994</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA24</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111288994</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">UBW_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111288994</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049730684 |
illustrated | Illustrated |
indexdate | 2025-04-02T08:00:40Z |
institution | BVB |
isbn | 9783111288994 9783111289816 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035072885 |
oclc_num | 1437887796 |
open_access_boolean | |
owner | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-739 DE-703 DE-11 DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-20 |
owner_facet | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-739 DE-703 DE-11 DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-20 |
physical | 1 Online-Ressource (IX, 199 Seiten) Illustrationen, Diagramme |
psigel | ZDB-23-DGG ZDB-23-DMA ZDB-23-DMA24 ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DMA ZDB-23-DMA24 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DMA TUM_Paketkauf_2024 ZDB-23-DMA UBW_Paketkauf ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter Textbook |
spelling | Han Veiga, Maria Verfasser (DE-588)1332666396 aut The mathematics of machine learning lectures on supervised methods and beyond Maria Han Veiga and François Gaston Ged Berlin ; Boston De Gruyter [2024] © 2024 1 Online-Ressource (IX, 199 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier De Gruyter Textbook This book is an introduction to machine learning, with a strong focus on the mathematics behind the standard algorithms and techniques in the field, aimed at senior undergraduates and early graduate students of Mathematics. There is a focus on well-known supervised machine learning algorithms, detailing the existing theory to provide some theoretical guarantees, featuring intuitive proofs and exposition of the material in a concise and precise manner. A broad set of topics is covered, giving an overview of the field. A summary of the topics covered is: statistical learning theory, approximation theory, linear models, kernel methods, Gaussian processes, deep neural networks, ensemble methods and unsupervised learning techniques, such as clustering and dimensionality reduction. This book is suited for students who are interested in entering the field, by preparing them to master the standard tools in Machine Learning. The reader will be equipped to understand the main theoretical questions of the current research and to engage with the field Kernel-Methoden Neuronale Netze Statistisches Lernen überwachtes Lernen MATHEMATICS / Applied bisacsh Angewandte Mathematik (DE-588)4142443-8 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 s Angewandte Mathematik (DE-588)4142443-8 s DE-604 Ged, François Verfasser (DE-588)1332667236 aut Erscheint auch als Druck-Ausgabe 978-3-11-128847-5 (DE-604)BV049748196 https://doi.org/10.1515/9783111288994 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Han Veiga, Maria Ged, François The mathematics of machine learning lectures on supervised methods and beyond Kernel-Methoden Neuronale Netze Statistisches Lernen überwachtes Lernen MATHEMATICS / Applied bisacsh Angewandte Mathematik (DE-588)4142443-8 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4142443-8 (DE-588)4193754-5 |
title | The mathematics of machine learning lectures on supervised methods and beyond |
title_auth | The mathematics of machine learning lectures on supervised methods and beyond |
title_exact_search | The mathematics of machine learning lectures on supervised methods and beyond |
title_full | The mathematics of machine learning lectures on supervised methods and beyond Maria Han Veiga and François Gaston Ged |
title_fullStr | The mathematics of machine learning lectures on supervised methods and beyond Maria Han Veiga and François Gaston Ged |
title_full_unstemmed | The mathematics of machine learning lectures on supervised methods and beyond Maria Han Veiga and François Gaston Ged |
title_short | The mathematics of machine learning |
title_sort | the mathematics of machine learning lectures on supervised methods and beyond |
title_sub | lectures on supervised methods and beyond |
topic | Kernel-Methoden Neuronale Netze Statistisches Lernen überwachtes Lernen MATHEMATICS / Applied bisacsh Angewandte Mathematik (DE-588)4142443-8 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Kernel-Methoden Neuronale Netze Statistisches Lernen überwachtes Lernen MATHEMATICS / Applied Angewandte Mathematik Maschinelles Lernen |
url | https://doi.org/10.1515/9783111288994 |
work_keys_str_mv | AT hanveigamaria themathematicsofmachinelearninglecturesonsupervisedmethodsandbeyond AT gedfrancois themathematicsofmachinelearninglecturesonsupervisedmethodsandbeyond |