Hamilton’s principle in continuum mechanics:
Mechanics of Systems of Particles -- Mathematical Preliminaries -- Mechanics of Continuous Media -- Motions and Comparison Motions of a Mixture -- Singular Surfaces -- Index.
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham ; Switzerland
Springer
[2021]
|
Ausgabe: | [revised , updated edition] |
Schlagworte: | |
Zusammenfassung: | Mechanics of Systems of Particles -- Mathematical Preliminaries -- Mechanics of Continuous Media -- Motions and Comparison Motions of a Mixture -- Singular Surfaces -- Index. This revised, updated edition provides a comprehensive and rigorous description of the application of Hamilton’s principle to continuous media. To introduce terminology and initial concepts, it begins with what is called the first problem of the calculus of variations. For both historical and pedagogical reasons, it first discusses the application of the principle to systems of particles, including conservative and non-conservative systems and systems with constraints. The foundations of mechanics of continua are introduced in the context of inner product spaces. With this basis, the application of Hamilton’s principle to the classical theories of fluid and solid mechanics are covered. Then recent developments are described, including materials with microstructure, mixtures, and continua with singular surfaces. Presents a comprehensive, rigorous description of the application of Hamilton’s principle to continuous media; Includes recent applications of the principle to continua with microstructure, mixtures, and media with surfaces of discontinuity; Discusses foundations of continuum mechanics and variational methods therein in the context of linear vector spaces. |
Beschreibung: | Literaturangaben |
Beschreibung: | xiv, 104 Seiten |
ISBN: | 9783030903053 9783030903060 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049688458 | ||
003 | DE-604 | ||
005 | 20240517 | ||
007 | t | ||
008 | 240516s2021 sz |||| 00||| eng d | ||
020 | |a 9783030903053 |c Print |9 978-3-030-90305-3 | ||
020 | |a 9783030903060 |c Online |9 978-3-030-90306-0 | ||
035 | |a (OCoLC)1437843638 | ||
035 | |a (DE-599)KXP1787467295 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH | ||
049 | |a DE-83 | ||
084 | |a 74A20 |2 msc/2020 | ||
084 | |a 70H25 |2 msc/2020 | ||
084 | |a 74A99 |2 msc/2020 | ||
084 | |a 76A99 |2 msc/2020 | ||
100 | 1 | |a Bedford, Anthony |0 (DE-588)1329848519 |4 aut | |
245 | 1 | 0 | |a Hamilton’s principle in continuum mechanics |c Anthony Bedford |
250 | |a [revised , updated edition] | ||
264 | 1 | |a Cham ; Switzerland |b Springer |c [2021] | |
264 | 4 | |c © 2021 | |
300 | |a xiv, 104 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturangaben | ||
520 | 3 | |a Mechanics of Systems of Particles -- Mathematical Preliminaries -- Mechanics of Continuous Media -- Motions and Comparison Motions of a Mixture -- Singular Surfaces -- Index. | |
520 | 3 | |a This revised, updated edition provides a comprehensive and rigorous description of the application of Hamilton’s principle to continuous media. To introduce terminology and initial concepts, it begins with what is called the first problem of the calculus of variations. For both historical and pedagogical reasons, it first discusses the application of the principle to systems of particles, including conservative and non-conservative systems and systems with constraints. The foundations of mechanics of continua are introduced in the context of inner product spaces. With this basis, the application of Hamilton’s principle to the classical theories of fluid and solid mechanics are covered. Then recent developments are described, including materials with microstructure, mixtures, and continua with singular surfaces. Presents a comprehensive, rigorous description of the application of Hamilton’s principle to continuous media; Includes recent applications of the principle to continua with microstructure, mixtures, and media with surfaces of discontinuity; Discusses foundations of continuum mechanics and variational methods therein in the context of linear vector spaces. | |
650 | 0 | 7 | |a Kontinuumsmechanik |0 (DE-588)4032296-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hamiltonsches System |0 (DE-588)4139943-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hamiltonsches Prinzip |0 (DE-588)4158958-0 |2 gnd |9 rswk-swf |
653 | 0 | |a Continuum physics. | |
653 | 0 | |a Mathematical optimization. | |
653 | 0 | |a Algebra. | |
653 | 0 | |a Mechanical engineering. | |
653 | 0 | |a Mathematical physics. | |
689 | 0 | 0 | |a Kontinuumsmechanik |0 (DE-588)4032296-8 |D s |
689 | 0 | 1 | |a Hamiltonsches Prinzip |0 (DE-588)4158958-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Hamiltonsches System |0 (DE-588)4139943-2 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-030-90306-0 |
Datensatz im Suchindex
_version_ | 1805082358605414400 |
---|---|
adam_text | |
any_adam_object | |
author | Bedford, Anthony |
author_GND | (DE-588)1329848519 |
author_facet | Bedford, Anthony |
author_role | aut |
author_sort | Bedford, Anthony |
author_variant | a b ab |
building | Verbundindex |
bvnumber | BV049688458 |
ctrlnum | (OCoLC)1437843638 (DE-599)KXP1787467295 |
edition | [revised , updated edition] |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV049688458</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240517</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">240516s2021 sz |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030903053</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-030-90305-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030903060</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-030-90306-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1437843638</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1787467295</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74A20</subfield><subfield code="2">msc/2020</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">70H25</subfield><subfield code="2">msc/2020</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74A99</subfield><subfield code="2">msc/2020</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">76A99</subfield><subfield code="2">msc/2020</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bedford, Anthony</subfield><subfield code="0">(DE-588)1329848519</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hamilton’s principle in continuum mechanics</subfield><subfield code="c">Anthony Bedford</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">[revised , updated edition]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham ; Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 104 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Mechanics of Systems of Particles -- Mathematical Preliminaries -- Mechanics of Continuous Media -- Motions and Comparison Motions of a Mixture -- Singular Surfaces -- Index.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This revised, updated edition provides a comprehensive and rigorous description of the application of Hamilton’s principle to continuous media. To introduce terminology and initial concepts, it begins with what is called the first problem of the calculus of variations. For both historical and pedagogical reasons, it first discusses the application of the principle to systems of particles, including conservative and non-conservative systems and systems with constraints. The foundations of mechanics of continua are introduced in the context of inner product spaces. With this basis, the application of Hamilton’s principle to the classical theories of fluid and solid mechanics are covered. Then recent developments are described, including materials with microstructure, mixtures, and continua with singular surfaces. Presents a comprehensive, rigorous description of the application of Hamilton’s principle to continuous media; Includes recent applications of the principle to continua with microstructure, mixtures, and media with surfaces of discontinuity; Discusses foundations of continuum mechanics and variational methods therein in the context of linear vector spaces.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontinuumsmechanik</subfield><subfield code="0">(DE-588)4032296-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamiltonsches Prinzip</subfield><subfield code="0">(DE-588)4158958-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Continuum physics.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematical optimization.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Algebra.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mechanical engineering.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematical physics.</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kontinuumsmechanik</subfield><subfield code="0">(DE-588)4032296-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hamiltonsches Prinzip</subfield><subfield code="0">(DE-588)4158958-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-030-90306-0</subfield></datafield></record></collection> |
id | DE-604.BV049688458 |
illustrated | Not Illustrated |
indexdate | 2024-07-20T07:31:24Z |
institution | BVB |
isbn | 9783030903053 9783030903060 |
language | English |
oclc_num | 1437843638 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | xiv, 104 Seiten |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Springer |
record_format | marc |
spelling | Bedford, Anthony (DE-588)1329848519 aut Hamilton’s principle in continuum mechanics Anthony Bedford [revised , updated edition] Cham ; Switzerland Springer [2021] © 2021 xiv, 104 Seiten txt rdacontent n rdamedia nc rdacarrier Literaturangaben Mechanics of Systems of Particles -- Mathematical Preliminaries -- Mechanics of Continuous Media -- Motions and Comparison Motions of a Mixture -- Singular Surfaces -- Index. This revised, updated edition provides a comprehensive and rigorous description of the application of Hamilton’s principle to continuous media. To introduce terminology and initial concepts, it begins with what is called the first problem of the calculus of variations. For both historical and pedagogical reasons, it first discusses the application of the principle to systems of particles, including conservative and non-conservative systems and systems with constraints. The foundations of mechanics of continua are introduced in the context of inner product spaces. With this basis, the application of Hamilton’s principle to the classical theories of fluid and solid mechanics are covered. Then recent developments are described, including materials with microstructure, mixtures, and continua with singular surfaces. Presents a comprehensive, rigorous description of the application of Hamilton’s principle to continuous media; Includes recent applications of the principle to continua with microstructure, mixtures, and media with surfaces of discontinuity; Discusses foundations of continuum mechanics and variational methods therein in the context of linear vector spaces. Kontinuumsmechanik (DE-588)4032296-8 gnd rswk-swf Hamiltonsches System (DE-588)4139943-2 gnd rswk-swf Hamiltonsches Prinzip (DE-588)4158958-0 gnd rswk-swf Continuum physics. Mathematical optimization. Algebra. Mechanical engineering. Mathematical physics. Kontinuumsmechanik (DE-588)4032296-8 s Hamiltonsches Prinzip (DE-588)4158958-0 s DE-604 Hamiltonsches System (DE-588)4139943-2 s Erscheint auch als Online-Ausgabe 978-3-030-90306-0 |
spellingShingle | Bedford, Anthony Hamilton’s principle in continuum mechanics Kontinuumsmechanik (DE-588)4032296-8 gnd Hamiltonsches System (DE-588)4139943-2 gnd Hamiltonsches Prinzip (DE-588)4158958-0 gnd |
subject_GND | (DE-588)4032296-8 (DE-588)4139943-2 (DE-588)4158958-0 |
title | Hamilton’s principle in continuum mechanics |
title_auth | Hamilton’s principle in continuum mechanics |
title_exact_search | Hamilton’s principle in continuum mechanics |
title_full | Hamilton’s principle in continuum mechanics Anthony Bedford |
title_fullStr | Hamilton’s principle in continuum mechanics Anthony Bedford |
title_full_unstemmed | Hamilton’s principle in continuum mechanics Anthony Bedford |
title_short | Hamilton’s principle in continuum mechanics |
title_sort | hamilton s principle in continuum mechanics |
topic | Kontinuumsmechanik (DE-588)4032296-8 gnd Hamiltonsches System (DE-588)4139943-2 gnd Hamiltonsches Prinzip (DE-588)4158958-0 gnd |
topic_facet | Kontinuumsmechanik Hamiltonsches System Hamiltonsches Prinzip |
work_keys_str_mv | AT bedfordanthony hamiltonsprincipleincontinuummechanics |