Think outside the Black Box: Model-Agnostic Deep Learning with Domain Knowledge = Think outside the Black Box : Modellagnostisches Deep Learning mit Domänenwissen
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Würzburg
Oktober 2023
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | erschienen 2024 |
Beschreibung: | xvii, 234 Seiten Illustrationen, Diagramme |
DOI: | 10.25972/OPUS-34968 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV049681766 | ||
003 | DE-604 | ||
007 | t | ||
008 | 240510s2023 gw a||| m||| 00||| eng d | ||
015 | |a 24,O03 |2 dnb | ||
035 | |a (OCoLC)1437836645 | ||
035 | |a (DE-599)BVBBV049681766 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |8 3\p |a eng | |
044 | |a gw |c XA-DE-BY | ||
049 | |a DE-384 |a DE-473 |a DE-703 |a DE-1051 |a DE-824 |a DE-29 |a DE-12 |a DE-91 |a DE-19 |a DE-1049 |a DE-92 |a DE-739 |a DE-898 |a DE-355 |a DE-706 |a DE-20 |a DE-1102 |a DE-860 |a DE-2174 | ||
084 | |8 1\p |a 006.31 |2 23ksdnb | ||
084 | |8 2\p |a 004 |2 23sdnb | ||
100 | 1 | |a Kobs, Konstantin |d 19XX- |e Verfasser |0 (DE-588)132890346X |4 aut | |
245 | 1 | 0 | |a Think outside the Black Box |b Model-Agnostic Deep Learning with Domain Knowledge = Think outside the Black Box : Modellagnostisches Deep Learning mit Domänenwissen |c vorgelegt von Konstantin Kobs |
246 | 1 | 1 | |a Think outside the Black Box |
264 | 1 | |a Würzburg |c Oktober 2023 | |
300 | |a xvii, 234 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a erschienen 2024 | ||
502 | |b Dissertation |c Julius-Maximilians-Universität Würzburg |d 2024 | ||
546 | |a Zusammenfassung in deutscher und englischer Sprache | ||
583 | 1 | |a Archivierung/Langzeitarchivierung gewährleistet |5 DE-101 |2 pdager | |
650 | 0 | 7 | |8 4\p |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |
650 | 0 | 7 | |8 5\p |a Merkmalsextraktion |0 (DE-588)4314440-8 |2 gnd |
650 | 0 | 7 | |8 6\p |a Deep learning |0 (DE-588)1135597375 |2 gnd |
650 | 0 | 7 | |8 7\p |a Neuronales Netz |0 (DE-588)4226127-2 |2 gnd |
653 | |a Machine Learning | ||
653 | |a Model-Agnostic | ||
653 | |a Domain Knowledge | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o urn:nbn:de:bvb:20-opus-349689 |o doi:10.25972/OPUS-34968 |
856 | 4 | 1 | |u https://doi.org/10.25972/OPUS-34968 |x Resolving-System |z kostenfrei |3 Volltext |
883 | 0 | |8 1\p |a emakn |c 0,60505 |d 20240227 |q DE-101 |u https://d-nb.info/provenance/plan#emakn | |
883 | 0 | |8 2\p |a emasg |c 0,48618 |d 20240227 |q DE-101 |u https://d-nb.info/provenance/plan#emasg | |
883 | 1 | |8 3\p |a npi |d 20240226 |q DE-101 |u https://d-nb.info/provenance/plan#npi | |
883 | 0 | |8 4\p |a emagnd |c 0,50626 |d 20240227 |q DE-101 |u https://d-nb.info/provenance/plan#emagnd | |
883 | 0 | |8 5\p |a emagnd |c 0,25757 |d 20240227 |q DE-101 |u https://d-nb.info/provenance/plan#emagnd | |
883 | 0 | |8 6\p |a emagnd |c 0,14785 |d 20240227 |q DE-101 |u https://d-nb.info/provenance/plan#emagnd | |
883 | 0 | |8 7\p |a emagnd |c 0,11320 |d 20240227 |q DE-101 |u https://d-nb.info/provenance/plan#emagnd | |
912 | |a ebook |
Datensatz im Suchindex
_version_ | 1805082324733263872 |
---|---|
adam_text | |
any_adam_object | |
author | Kobs, Konstantin 19XX- |
author_GND | (DE-588)132890346X |
author_facet | Kobs, Konstantin 19XX- |
author_role | aut |
author_sort | Kobs, Konstantin 19XX- |
author_variant | k k kk |
building | Verbundindex |
bvnumber | BV049681766 |
collection | ebook |
ctrlnum | (OCoLC)1437836645 (DE-599)BVBBV049681766 |
doi_str_mv | 10.25972/OPUS-34968 |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV049681766</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">240510s2023 gw a||| m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">24,O03</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1437836645</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049681766</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BY</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-2174</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">006.31</subfield><subfield code="2">23ksdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">2\p</subfield><subfield code="a">004</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kobs, Konstantin</subfield><subfield code="d">19XX-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)132890346X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Think outside the Black Box</subfield><subfield code="b">Model-Agnostic Deep Learning with Domain Knowledge = Think outside the Black Box : Modellagnostisches Deep Learning mit Domänenwissen</subfield><subfield code="c">vorgelegt von Konstantin Kobs</subfield></datafield><datafield tag="246" ind1="1" ind2="1"><subfield code="a">Think outside the Black Box</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Würzburg</subfield><subfield code="c">Oktober 2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvii, 234 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">erschienen 2024</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Julius-Maximilians-Universität Würzburg</subfield><subfield code="d">2024</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">Zusammenfassung in deutscher und englischer Sprache</subfield></datafield><datafield tag="583" ind1="1" ind2=" "><subfield code="a">Archivierung/Langzeitarchivierung gewährleistet</subfield><subfield code="5">DE-101</subfield><subfield code="2">pdager</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">4\p</subfield><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">5\p</subfield><subfield code="a">Merkmalsextraktion</subfield><subfield code="0">(DE-588)4314440-8</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">6\p</subfield><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">7\p</subfield><subfield code="a">Neuronales Netz</subfield><subfield code="0">(DE-588)4226127-2</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Machine Learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Model-Agnostic</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Domain Knowledge</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">urn:nbn:de:bvb:20-opus-349689</subfield><subfield code="o">doi:10.25972/OPUS-34968</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.25972/OPUS-34968</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">emakn</subfield><subfield code="c">0,60505</subfield><subfield code="d">20240227</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emakn</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">emasg</subfield><subfield code="c">0,48618</subfield><subfield code="d">20240227</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emasg</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">npi</subfield><subfield code="d">20240226</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#npi</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">emagnd</subfield><subfield code="c">0,50626</subfield><subfield code="d">20240227</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emagnd</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">emagnd</subfield><subfield code="c">0,25757</subfield><subfield code="d">20240227</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emagnd</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">emagnd</subfield><subfield code="c">0,14785</subfield><subfield code="d">20240227</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emagnd</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">7\p</subfield><subfield code="a">emagnd</subfield><subfield code="c">0,11320</subfield><subfield code="d">20240227</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emagnd</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV049681766 |
illustrated | Illustrated |
indexdate | 2024-07-20T07:30:52Z |
institution | BVB |
language | English |
oclc_num | 1437836645 |
open_access_boolean | 1 |
owner | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
owner_facet | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
physical | xvii, 234 Seiten Illustrationen, Diagramme |
psigel | ebook |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
record_format | marc |
spelling | Kobs, Konstantin 19XX- Verfasser (DE-588)132890346X aut Think outside the Black Box Model-Agnostic Deep Learning with Domain Knowledge = Think outside the Black Box : Modellagnostisches Deep Learning mit Domänenwissen vorgelegt von Konstantin Kobs Think outside the Black Box Würzburg Oktober 2023 xvii, 234 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier erschienen 2024 Dissertation Julius-Maximilians-Universität Würzburg 2024 Zusammenfassung in deutscher und englischer Sprache Archivierung/Langzeitarchivierung gewährleistet DE-101 pdager 4\p Maschinelles Lernen (DE-588)4193754-5 gnd 5\p Merkmalsextraktion (DE-588)4314440-8 gnd 6\p Deep learning (DE-588)1135597375 gnd 7\p Neuronales Netz (DE-588)4226127-2 gnd Machine Learning Model-Agnostic Domain Knowledge (DE-588)4113937-9 Hochschulschrift gnd-content Erscheint auch als Online-Ausgabe urn:nbn:de:bvb:20-opus-349689 doi:10.25972/OPUS-34968 https://doi.org/10.25972/OPUS-34968 Resolving-System kostenfrei Volltext 1\p emakn 0,60505 20240227 DE-101 https://d-nb.info/provenance/plan#emakn 2\p emasg 0,48618 20240227 DE-101 https://d-nb.info/provenance/plan#emasg 3\p npi 20240226 DE-101 https://d-nb.info/provenance/plan#npi 4\p emagnd 0,50626 20240227 DE-101 https://d-nb.info/provenance/plan#emagnd 5\p emagnd 0,25757 20240227 DE-101 https://d-nb.info/provenance/plan#emagnd 6\p emagnd 0,14785 20240227 DE-101 https://d-nb.info/provenance/plan#emagnd 7\p emagnd 0,11320 20240227 DE-101 https://d-nb.info/provenance/plan#emagnd |
spellingShingle | Kobs, Konstantin 19XX- Think outside the Black Box Model-Agnostic Deep Learning with Domain Knowledge = Think outside the Black Box : Modellagnostisches Deep Learning mit Domänenwissen 4\p Maschinelles Lernen (DE-588)4193754-5 gnd 5\p Merkmalsextraktion (DE-588)4314440-8 gnd 6\p Deep learning (DE-588)1135597375 gnd 7\p Neuronales Netz (DE-588)4226127-2 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)4314440-8 (DE-588)1135597375 (DE-588)4226127-2 (DE-588)4113937-9 |
title | Think outside the Black Box Model-Agnostic Deep Learning with Domain Knowledge = Think outside the Black Box : Modellagnostisches Deep Learning mit Domänenwissen |
title_alt | Think outside the Black Box |
title_auth | Think outside the Black Box Model-Agnostic Deep Learning with Domain Knowledge = Think outside the Black Box : Modellagnostisches Deep Learning mit Domänenwissen |
title_exact_search | Think outside the Black Box Model-Agnostic Deep Learning with Domain Knowledge = Think outside the Black Box : Modellagnostisches Deep Learning mit Domänenwissen |
title_full | Think outside the Black Box Model-Agnostic Deep Learning with Domain Knowledge = Think outside the Black Box : Modellagnostisches Deep Learning mit Domänenwissen vorgelegt von Konstantin Kobs |
title_fullStr | Think outside the Black Box Model-Agnostic Deep Learning with Domain Knowledge = Think outside the Black Box : Modellagnostisches Deep Learning mit Domänenwissen vorgelegt von Konstantin Kobs |
title_full_unstemmed | Think outside the Black Box Model-Agnostic Deep Learning with Domain Knowledge = Think outside the Black Box : Modellagnostisches Deep Learning mit Domänenwissen vorgelegt von Konstantin Kobs |
title_short | Think outside the Black Box |
title_sort | think outside the black box model agnostic deep learning with domain knowledge think outside the black box modellagnostisches deep learning mit domanenwissen |
title_sub | Model-Agnostic Deep Learning with Domain Knowledge = Think outside the Black Box : Modellagnostisches Deep Learning mit Domänenwissen |
topic | 4\p Maschinelles Lernen (DE-588)4193754-5 gnd 5\p Merkmalsextraktion (DE-588)4314440-8 gnd 6\p Deep learning (DE-588)1135597375 gnd 7\p Neuronales Netz (DE-588)4226127-2 gnd |
topic_facet | Maschinelles Lernen Merkmalsextraktion Deep learning Neuronales Netz Hochschulschrift |
url | https://doi.org/10.25972/OPUS-34968 |
work_keys_str_mv | AT kobskonstantin thinkoutsidetheblackboxmodelagnosticdeeplearningwithdomainknowledgethinkoutsidetheblackboxmodellagnostischesdeeplearningmitdomanenwissen AT kobskonstantin thinkoutsidetheblackbox |