A modern introduction to mathematical analysis:
This textbook presents all the basics for the first two years of a course in mathematical analysis, from the natural numbers to Stokes-Cartan Theorem.The main novelty which distinguishes this book is the choice of introducing the Kurzweil-Henstock integral from the very beginning. Although this appr...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham
Birkhäuser
[2024]
|
Ausgabe: | 2023 |
Schlagworte: | |
Zusammenfassung: | This textbook presents all the basics for the first two years of a course in mathematical analysis, from the natural numbers to Stokes-Cartan Theorem.The main novelty which distinguishes this book is the choice of introducing the Kurzweil-Henstock integral from the very beginning. Although this approach requires a small additional effort by the student, it will be compensated by a substantial advantage in the development of the theory, and later on when learning about more advanced topics.The text guides the reader with clarity in the discovery of the many different subjects, providing all necessary tools – no preliminaries are needed. Both students and their instructors will benefit from this book and its novel approach, turning their course in mathematical analysis into a gratifying and successful experience |
Beschreibung: | - Part I The Basics of Mathematical Analysis. - 1. Sets of Numbers and Metric Spaces. - 2. Continuity. - 3. Limits. - 4. Compactness and Completeness. - 5. Exponential and Circular Functions. - Part II Differential and Integral Calculus in R. - 6. The Derivative. - 7. The Integral. - Part III Further Developments. - 8. Numerical Series and Series of Functions. - 9. More on the Integral. - Part IV Differential and Integral Calculus in RN. - 10.The Differential. - 11. The Integral. - 12. Differential Forms |
Beschreibung: | xxi, 431 Seiten Illustrationen 235 mm |
ISBN: | 9783031237157 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049679180 | ||
003 | DE-604 | ||
005 | 20240612 | ||
007 | t | ||
008 | 240507s2024 a||| |||| 00||| eng d | ||
020 | |a 9783031237157 |9 978-3-031-23715-7 | ||
024 | 3 | |a 9783031237157 | |
035 | |a (OCoLC)1443589023 | ||
035 | |a (DE-599)BVBBV049679180 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
100 | 1 | |a Fonda, Alessandro |e Verfasser |0 (DE-588)1127564102 |4 aut | |
245 | 1 | 0 | |a A modern introduction to mathematical analysis |c Alessandro Fonda |
264 | 1 | |a Cham |b Birkhäuser |c [2024] | |
264 | 4 | |c © 2023 | |
300 | |a xxi, 431 Seiten |b Illustrationen |c 235 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a - Part I The Basics of Mathematical Analysis. - 1. Sets of Numbers and Metric Spaces. - 2. Continuity. - 3. Limits. - 4. Compactness and Completeness. - 5. Exponential and Circular Functions. - Part II Differential and Integral Calculus in R. - 6. The Derivative. - 7. The Integral. - Part III Further Developments. - 8. Numerical Series and Series of Functions. - 9. More on the Integral. - Part IV Differential and Integral Calculus in RN. - 10.The Differential. - 11. The Integral. - 12. Differential Forms | ||
520 | |a This textbook presents all the basics for the first two years of a course in mathematical analysis, from the natural numbers to Stokes-Cartan Theorem.The main novelty which distinguishes this book is the choice of introducing the Kurzweil-Henstock integral from the very beginning. Although this approach requires a small additional effort by the student, it will be compensated by a substantial advantage in the development of the theory, and later on when learning about more advanced topics.The text guides the reader with clarity in the discovery of the many different subjects, providing all necessary tools – no preliminaries are needed. Both students and their instructors will benefit from this book and its novel approach, turning their course in mathematical analysis into a gratifying and successful experience | ||
650 | 4 | |a Mathematical analysis | |
653 | |a Hardcover, Softcover / Mathematik/Analysis | ||
775 | 0 | 8 | |i Äquivalent |n Druck-Ausgabe, Hardcover |z 978-3-031-23712-6 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-031-23713-3 |
Datensatz im Suchindex
_version_ | 1805083847881129984 |
---|---|
adam_text | |
any_adam_object | |
author | Fonda, Alessandro |
author_GND | (DE-588)1127564102 |
author_facet | Fonda, Alessandro |
author_role | aut |
author_sort | Fonda, Alessandro |
author_variant | a f af |
building | Verbundindex |
bvnumber | BV049679180 |
ctrlnum | (OCoLC)1443589023 (DE-599)BVBBV049679180 |
edition | 2023 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV049679180</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240612</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">240507s2024 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031237157</subfield><subfield code="9">978-3-031-23715-7</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783031237157</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1443589023</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049679180</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fonda, Alessandro</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1127564102</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A modern introduction to mathematical analysis</subfield><subfield code="c">Alessandro Fonda</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxi, 431 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">235 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">- Part I The Basics of Mathematical Analysis. - 1. Sets of Numbers and Metric Spaces. - 2. Continuity. - 3. Limits. - 4. Compactness and Completeness. - 5. Exponential and Circular Functions. - Part II Differential and Integral Calculus in R. - 6. The Derivative. - 7. The Integral. - Part III Further Developments. - 8. Numerical Series and Series of Functions. - 9. More on the Integral. - Part IV Differential and Integral Calculus in RN. - 10.The Differential. - 11. The Integral. - 12. Differential Forms</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This textbook presents all the basics for the first two years of a course in mathematical analysis, from the natural numbers to Stokes-Cartan Theorem.The main novelty which distinguishes this book is the choice of introducing the Kurzweil-Henstock integral from the very beginning. Although this approach requires a small additional effort by the student, it will be compensated by a substantial advantage in the development of the theory, and later on when learning about more advanced topics.The text guides the reader with clarity in the discovery of the many different subjects, providing all necessary tools – no preliminaries are needed. Both students and their instructors will benefit from this book and its novel approach, turning their course in mathematical analysis into a gratifying and successful experience</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hardcover, Softcover / Mathematik/Analysis</subfield></datafield><datafield tag="775" ind1="0" ind2="8"><subfield code="i">Äquivalent</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-3-031-23712-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-031-23713-3</subfield></datafield></record></collection> |
id | DE-604.BV049679180 |
illustrated | Illustrated |
indexdate | 2024-07-20T07:55:04Z |
institution | BVB |
isbn | 9783031237157 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035022000 |
oclc_num | 1443589023 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | xxi, 431 Seiten Illustrationen 235 mm |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Birkhäuser |
record_format | marc |
spelling | Fonda, Alessandro Verfasser (DE-588)1127564102 aut A modern introduction to mathematical analysis Alessandro Fonda Cham Birkhäuser [2024] © 2023 xxi, 431 Seiten Illustrationen 235 mm txt rdacontent n rdamedia nc rdacarrier - Part I The Basics of Mathematical Analysis. - 1. Sets of Numbers and Metric Spaces. - 2. Continuity. - 3. Limits. - 4. Compactness and Completeness. - 5. Exponential and Circular Functions. - Part II Differential and Integral Calculus in R. - 6. The Derivative. - 7. The Integral. - Part III Further Developments. - 8. Numerical Series and Series of Functions. - 9. More on the Integral. - Part IV Differential and Integral Calculus in RN. - 10.The Differential. - 11. The Integral. - 12. Differential Forms This textbook presents all the basics for the first two years of a course in mathematical analysis, from the natural numbers to Stokes-Cartan Theorem.The main novelty which distinguishes this book is the choice of introducing the Kurzweil-Henstock integral from the very beginning. Although this approach requires a small additional effort by the student, it will be compensated by a substantial advantage in the development of the theory, and later on when learning about more advanced topics.The text guides the reader with clarity in the discovery of the many different subjects, providing all necessary tools – no preliminaries are needed. Both students and their instructors will benefit from this book and its novel approach, turning their course in mathematical analysis into a gratifying and successful experience Mathematical analysis Hardcover, Softcover / Mathematik/Analysis Äquivalent Druck-Ausgabe, Hardcover 978-3-031-23712-6 Erscheint auch als Online-Ausgabe 978-3-031-23713-3 |
spellingShingle | Fonda, Alessandro A modern introduction to mathematical analysis Mathematical analysis |
title | A modern introduction to mathematical analysis |
title_auth | A modern introduction to mathematical analysis |
title_exact_search | A modern introduction to mathematical analysis |
title_full | A modern introduction to mathematical analysis Alessandro Fonda |
title_fullStr | A modern introduction to mathematical analysis Alessandro Fonda |
title_full_unstemmed | A modern introduction to mathematical analysis Alessandro Fonda |
title_short | A modern introduction to mathematical analysis |
title_sort | a modern introduction to mathematical analysis |
topic | Mathematical analysis |
topic_facet | Mathematical analysis |
work_keys_str_mv | AT fondaalessandro amodernintroductiontomathematicalanalysis |