Statistical analytics for health data science with SAS and R:
"This book is aimed to compile typical fundamental to advanced statistical methods to be used for health data sciences. This book promotes the applications to health and health-related data. However, the models in this book can be used to analyse any kind of data. The data are analysed with the...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boca Raton, London, New York
CRC Press, Taylor & Francis Group
2023
|
Ausgabe: | First edition |
Schriftenreihe: | Chapman & Hall/CRC biostatistics series
|
Schlagworte: | |
Online-Zugang: | DE-188 Volltext |
Zusammenfassung: | "This book is aimed to compile typical fundamental to advanced statistical methods to be used for health data sciences. This book promotes the applications to health and health-related data. However, the models in this book can be used to analyse any kind of data. The data are analysed with the commonly used statistical software of R/SAS (with online supplementary on SPSS/Stata). The data and computing programs will be available to facilitate readers' learning experience. There has been considerable attention to making statistical methods and analytics available to health data science researchers and students. This book brings it all together to provide a concise point-of-reference for most commonly used statistical methods from the fundamental level to the advanced level. We envisage this book will contribute to the rapid development in health data science. We provide straightforward explanations of the collected statistical theory and models, compilations of a variety of publicly available data, and illustrations of data analytics using commonly used statistical software of SAS/R. We will have the data and computer programs available for readers to replicate and implement the new methods. The primary readers would be applied data scientists and practitioners in any field of data science, applied statistical analysts and scientists in public health, academic researchers, and graduate students in statistics and biostatistics. The secondary readers would be R&D professionals/practitioners in industry and governmental agencies. This book can be used for both teaching and applied research"-- |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | 1 Online-Ressource (xxi, 257 Seiten) Illustrationen |
ISBN: | 9781003315674 9781000848861 1000848868 9781000848823 1000848825 |
DOI: | 10.1201/9781003315674 |
Internformat
MARC
LEADER | 00000nmm a22000001c 4500 | ||
---|---|---|---|
001 | BV049678164 | ||
003 | DE-604 | ||
005 | 20240514 | ||
007 | cr|uuu---uuuuu | ||
008 | 240507s2023 xxu|||| o||u| ||||||eng d | ||
020 | |a 9781003315674 |c ebook T&F |9 978-1-00-331567-4 | ||
020 | |a 9781000848861 |c ebook PQE |9 978-1-00-084886-1 | ||
020 | |a 1000848868 |c ebook PQE |9 1-00-084886-8 | ||
020 | |a 9781000848823 |c electronic book |9 978-1-00-084882-3 | ||
020 | |a 1000848825 |c electronic book |9 1-00-084882-5 | ||
024 | 7 | |a 10.1201/9781003315674 |2 doi | |
035 | |a (OCoLC)1437857572 | ||
035 | |a (DE-599)KEP089653718 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-188 | ||
100 | 1 | |a Wilson, Jeffrey R. |e Verfasser |0 (DE-588)170935221 |4 aut | |
245 | 1 | 0 | |a Statistical analytics for health data science with SAS and R |c Jeffrey R. Wilson, Ding-Geng Chen, and Karl E. Peace |
250 | |a First edition | ||
264 | 1 | |a Boca Raton, London, New York |b CRC Press, Taylor & Francis Group |c 2023 | |
300 | |a 1 Online-Ressource (xxi, 257 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Chapman & Hall/CRC biostatistics series | |
500 | |a Includes bibliographical references and index | ||
520 | 3 | |a "This book is aimed to compile typical fundamental to advanced statistical methods to be used for health data sciences. This book promotes the applications to health and health-related data. However, the models in this book can be used to analyse any kind of data. The data are analysed with the commonly used statistical software of R/SAS (with online supplementary on SPSS/Stata). The data and computing programs will be available to facilitate readers' learning experience. There has been considerable attention to making statistical methods and analytics available to health data science researchers and students. This book brings it all together to provide a concise point-of-reference for most commonly used statistical methods from the fundamental level to the advanced level. We envisage this book will contribute to the rapid development in health data science. We provide straightforward explanations of the collected statistical theory and models, compilations of a variety of publicly available data, and illustrations of data analytics using commonly used statistical software of SAS/R. We will have the data and computer programs available for readers to replicate and implement the new methods. The primary readers would be applied data scientists and practitioners in any field of data science, applied statistical analysts and scientists in public health, academic researchers, and graduate students in statistics and biostatistics. The secondary readers would be R&D professionals/practitioners in industry and governmental agencies. This book can be used for both teaching and applied research"-- | |
653 | |a SAS (Computer file) | ||
653 | |a SAS (Computer file) / (OCoLC)fst01364029 | ||
653 | 0 | |a Medical statistics | |
653 | 0 | |a R (Computer program language) | |
653 | 0 | |a Statistics as Topic / methods | |
653 | 0 | |a Public Health | |
653 | 0 | |a Data Interpretation, Statistical | |
653 | 0 | |a Software | |
653 | 0 | |a BUSINESS & ECONOMICS / Statistics | |
653 | 0 | |a MATHEMATICS / Probability & Statistics / General | |
653 | 0 | |a Medical statistics / (OCoLC)fst01014672 | |
653 | 0 | |a R (Computer program language) / (OCoLC)fst01086207 | |
700 | 1 | |a Chen, Ding-Geng |e Verfasser |0 (DE-588)1048528332 |4 aut | |
700 | 1 | |a Peace, Karl E. |d 1941- |e Verfasser |0 (DE-588)1048528782 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-1-032-32562-0 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 978-1-032-32569-9 |
856 | 4 | 0 | |u https://doi.org/10.1201/9781003315674 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-7-TFC | ||
966 | e | |u https://doi.org/10.1201/9781003315674 |l DE-188 |p ZDB-7-TFC |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1805082308046225408 |
---|---|
adam_text | |
any_adam_object | |
author | Wilson, Jeffrey R. Chen, Ding-Geng Peace, Karl E. 1941- |
author_GND | (DE-588)170935221 (DE-588)1048528332 (DE-588)1048528782 |
author_facet | Wilson, Jeffrey R. Chen, Ding-Geng Peace, Karl E. 1941- |
author_role | aut aut aut |
author_sort | Wilson, Jeffrey R. |
author_variant | j r w jr jrw d g c dgc k e p ke kep |
building | Verbundindex |
bvnumber | BV049678164 |
collection | ZDB-7-TFC |
ctrlnum | (OCoLC)1437857572 (DE-599)KEP089653718 |
doi_str_mv | 10.1201/9781003315674 |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a22000001c 4500</leader><controlfield tag="001">BV049678164</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240514</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240507s2023 xxu|||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781003315674</subfield><subfield code="c">ebook T&F</subfield><subfield code="9">978-1-00-331567-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000848861</subfield><subfield code="c">ebook PQE</subfield><subfield code="9">978-1-00-084886-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1000848868</subfield><subfield code="c">ebook PQE</subfield><subfield code="9">1-00-084886-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000848823</subfield><subfield code="c">electronic book</subfield><subfield code="9">978-1-00-084882-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1000848825</subfield><subfield code="c">electronic book</subfield><subfield code="9">1-00-084882-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1201/9781003315674</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1437857572</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP089653718</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-188</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wilson, Jeffrey R.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)170935221</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Statistical analytics for health data science with SAS and R</subfield><subfield code="c">Jeffrey R. Wilson, Ding-Geng Chen, and Karl E. Peace</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, London, New York</subfield><subfield code="b">CRC Press, Taylor & Francis Group</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxi, 257 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Chapman & Hall/CRC biostatistics series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"This book is aimed to compile typical fundamental to advanced statistical methods to be used for health data sciences. This book promotes the applications to health and health-related data. However, the models in this book can be used to analyse any kind of data. The data are analysed with the commonly used statistical software of R/SAS (with online supplementary on SPSS/Stata). The data and computing programs will be available to facilitate readers' learning experience. There has been considerable attention to making statistical methods and analytics available to health data science researchers and students. This book brings it all together to provide a concise point-of-reference for most commonly used statistical methods from the fundamental level to the advanced level. We envisage this book will contribute to the rapid development in health data science. We provide straightforward explanations of the collected statistical theory and models, compilations of a variety of publicly available data, and illustrations of data analytics using commonly used statistical software of SAS/R. We will have the data and computer programs available for readers to replicate and implement the new methods. The primary readers would be applied data scientists and practitioners in any field of data science, applied statistical analysts and scientists in public health, academic researchers, and graduate students in statistics and biostatistics. The secondary readers would be R&D professionals/practitioners in industry and governmental agencies. This book can be used for both teaching and applied research"--</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">SAS (Computer file)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">SAS (Computer file) / (OCoLC)fst01364029</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medical statistics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R (Computer program language)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Statistics as Topic / methods</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Public Health</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Data Interpretation, Statistical</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Software</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">BUSINESS & ECONOMICS / Statistics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">MATHEMATICS / Probability & Statistics / General</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Medical statistics / (OCoLC)fst01014672</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">R (Computer program language) / (OCoLC)fst01086207</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Ding-Geng</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1048528332</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peace, Karl E.</subfield><subfield code="d">1941-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1048528782</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-032-32562-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">978-1-032-32569-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1201/9781003315674</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-7-TFC</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1201/9781003315674</subfield><subfield code="l">DE-188</subfield><subfield code="p">ZDB-7-TFC</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049678164 |
illustrated | Not Illustrated |
indexdate | 2024-07-20T07:30:36Z |
institution | BVB |
isbn | 9781003315674 9781000848861 1000848868 9781000848823 1000848825 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035021008 |
oclc_num | 1437857572 |
open_access_boolean | |
owner | DE-188 |
owner_facet | DE-188 |
physical | 1 Online-Ressource (xxi, 257 Seiten) Illustrationen |
psigel | ZDB-7-TFC |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | CRC Press, Taylor & Francis Group |
record_format | marc |
series2 | Chapman & Hall/CRC biostatistics series |
spelling | Wilson, Jeffrey R. Verfasser (DE-588)170935221 aut Statistical analytics for health data science with SAS and R Jeffrey R. Wilson, Ding-Geng Chen, and Karl E. Peace First edition Boca Raton, London, New York CRC Press, Taylor & Francis Group 2023 1 Online-Ressource (xxi, 257 Seiten) Illustrationen txt rdacontent c rdamedia cr rdacarrier Chapman & Hall/CRC biostatistics series Includes bibliographical references and index "This book is aimed to compile typical fundamental to advanced statistical methods to be used for health data sciences. This book promotes the applications to health and health-related data. However, the models in this book can be used to analyse any kind of data. The data are analysed with the commonly used statistical software of R/SAS (with online supplementary on SPSS/Stata). The data and computing programs will be available to facilitate readers' learning experience. There has been considerable attention to making statistical methods and analytics available to health data science researchers and students. This book brings it all together to provide a concise point-of-reference for most commonly used statistical methods from the fundamental level to the advanced level. We envisage this book will contribute to the rapid development in health data science. We provide straightforward explanations of the collected statistical theory and models, compilations of a variety of publicly available data, and illustrations of data analytics using commonly used statistical software of SAS/R. We will have the data and computer programs available for readers to replicate and implement the new methods. The primary readers would be applied data scientists and practitioners in any field of data science, applied statistical analysts and scientists in public health, academic researchers, and graduate students in statistics and biostatistics. The secondary readers would be R&D professionals/practitioners in industry and governmental agencies. This book can be used for both teaching and applied research"-- SAS (Computer file) SAS (Computer file) / (OCoLC)fst01364029 Medical statistics R (Computer program language) Statistics as Topic / methods Public Health Data Interpretation, Statistical Software BUSINESS & ECONOMICS / Statistics MATHEMATICS / Probability & Statistics / General Medical statistics / (OCoLC)fst01014672 R (Computer program language) / (OCoLC)fst01086207 Chen, Ding-Geng Verfasser (DE-588)1048528332 aut Peace, Karl E. 1941- Verfasser (DE-588)1048528782 aut Erscheint auch als Druck-Ausgabe, Hardcover 978-1-032-32562-0 Erscheint auch als Druck-Ausgabe, Paperback 978-1-032-32569-9 https://doi.org/10.1201/9781003315674 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Wilson, Jeffrey R. Chen, Ding-Geng Peace, Karl E. 1941- Statistical analytics for health data science with SAS and R |
title | Statistical analytics for health data science with SAS and R |
title_auth | Statistical analytics for health data science with SAS and R |
title_exact_search | Statistical analytics for health data science with SAS and R |
title_full | Statistical analytics for health data science with SAS and R Jeffrey R. Wilson, Ding-Geng Chen, and Karl E. Peace |
title_fullStr | Statistical analytics for health data science with SAS and R Jeffrey R. Wilson, Ding-Geng Chen, and Karl E. Peace |
title_full_unstemmed | Statistical analytics for health data science with SAS and R Jeffrey R. Wilson, Ding-Geng Chen, and Karl E. Peace |
title_short | Statistical analytics for health data science with SAS and R |
title_sort | statistical analytics for health data science with sas and r |
url | https://doi.org/10.1201/9781003315674 |
work_keys_str_mv | AT wilsonjeffreyr statisticalanalyticsforhealthdatasciencewithsasandr AT chendinggeng statisticalanalyticsforhealthdatasciencewithsasandr AT peacekarle statisticalanalyticsforhealthdatasciencewithsasandr |