q-RASAR: a path to predictive cheminformatics
This brief offers an introduction to the fascinating new field of quantitative read-across structure-activity relationships (q-RASAR) as a cheminformatics modeling approach in the background of quantitative structure-activity relationships (QSAR) and read-across (RA) as data gap-filling methods. It...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham
Springer
[2024]
|
Ausgabe: | 1st ed. 2024 |
Schriftenreihe: | SpringerBriefs in molecular science
|
Schlagworte: | |
Zusammenfassung: | This brief offers an introduction to the fascinating new field of quantitative read-across structure-activity relationships (q-RASAR) as a cheminformatics modeling approach in the background of quantitative structure-activity relationships (QSAR) and read-across (RA) as data gap-filling methods. It discusses the genesis and model development of q-RASAR models demonstrating practical examples. It also showcases successful case studies on the application of q-RASAR modeling in medicinal chemistry, predictive toxicology, and materials sciences. The book also includes the tools used for q-RASAR model development for new users. It is a valuable resource for researchers and students interested in grasping the development algorithm of q-RASAR models and their application within specific research domains |
Beschreibung: | Chemical Information and Molecular Similarity.- Read-across and Quantitative Structure-activity Relationships (QSAR) for Making Predictions and Data Gap-Filling.- Quantitative Read-Across (q-RA) and Quantitative Read-Across Structure-Activity Relationships (q-RASAR) – Genesis and Model Development.- Tools, Applications, and Case Studies (q-RA and q-RASAR).- Future Prospects. |
Beschreibung: | x, 91 Seiten Illustrationen 171 gr |
ISBN: | 9783031520563 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049671292 | ||
003 | DE-604 | ||
005 | 20240625 | ||
007 | t | ||
008 | 240430s2024 a||| |||| 00||| eng d | ||
020 | |a 9783031520563 |9 978-3-031-52056-3 | ||
024 | 3 | |a 9783031520563 | |
035 | |a (OCoLC)1419207617 | ||
035 | |a (DE-599)BVBBV049671292 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
100 | 1 | |a Roy, Kunal |d 1971- |e Verfasser |0 (DE-588)1185508783 |4 aut | |
245 | 1 | 0 | |a q-RASAR |b a path to predictive cheminformatics |c Kunal Roy, Arkaprava Banerjee |
264 | 1 | |a Cham |b Springer |c [2024] | |
300 | |a x, 91 Seiten |b Illustrationen |c 171 gr | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a SpringerBriefs in molecular science | |
500 | |a Chemical Information and Molecular Similarity.- Read-across and Quantitative Structure-activity Relationships (QSAR) for Making Predictions and Data Gap-Filling.- Quantitative Read-Across (q-RA) and Quantitative Read-Across Structure-Activity Relationships (q-RASAR) – Genesis and Model Development.- Tools, Applications, and Case Studies (q-RA and q-RASAR).- Future Prospects. | ||
520 | |a This brief offers an introduction to the fascinating new field of quantitative read-across structure-activity relationships (q-RASAR) as a cheminformatics modeling approach in the background of quantitative structure-activity relationships (QSAR) and read-across (RA) as data gap-filling methods. It discusses the genesis and model development of q-RASAR models demonstrating practical examples. It also showcases successful case studies on the application of q-RASAR modeling in medicinal chemistry, predictive toxicology, and materials sciences. The book also includes the tools used for q-RASAR model development for new users. It is a valuable resource for researchers and students interested in grasping the development algorithm of q-RASAR models and their application within specific research domains | ||
650 | 4 | |a bicssc | |
650 | 4 | |a bicssc | |
650 | 4 | |a bisacsh | |
650 | 4 | |a bisacsh | |
650 | 4 | |a Quantum physics | |
650 | 4 | |a Computer simulation | |
650 | 4 | |a Molecules—Models | |
650 | 4 | |a Chemistry—Data processing | |
653 | |a Hardcover, Softcover / Chemie/Theoretische Chemie | ||
700 | 1 | |a Banerjee, Arkaprava |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-031-52057-0 |
Datensatz im Suchindex
_version_ | 1805083843565191168 |
---|---|
adam_text | |
any_adam_object | |
author | Roy, Kunal 1971- Banerjee, Arkaprava |
author_GND | (DE-588)1185508783 |
author_facet | Roy, Kunal 1971- Banerjee, Arkaprava |
author_role | aut aut |
author_sort | Roy, Kunal 1971- |
author_variant | k r kr a b ab |
building | Verbundindex |
bvnumber | BV049671292 |
ctrlnum | (OCoLC)1419207617 (DE-599)BVBBV049671292 |
edition | 1st ed. 2024 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV049671292</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240625</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">240430s2024 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031520563</subfield><subfield code="9">978-3-031-52056-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783031520563</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1419207617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049671292</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Roy, Kunal</subfield><subfield code="d">1971-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1185508783</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">q-RASAR</subfield><subfield code="b">a path to predictive cheminformatics</subfield><subfield code="c">Kunal Roy, Arkaprava Banerjee</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 91 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">171 gr</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">SpringerBriefs in molecular science</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Chemical Information and Molecular Similarity.- Read-across and Quantitative Structure-activity Relationships (QSAR) for Making Predictions and Data Gap-Filling.- Quantitative Read-Across (q-RA) and Quantitative Read-Across Structure-Activity Relationships (q-RASAR) – Genesis and Model Development.- Tools, Applications, and Case Studies (q-RA and q-RASAR).- Future Prospects.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This brief offers an introduction to the fascinating new field of quantitative read-across structure-activity relationships (q-RASAR) as a cheminformatics modeling approach in the background of quantitative structure-activity relationships (QSAR) and read-across (RA) as data gap-filling methods. It discusses the genesis and model development of q-RASAR models demonstrating practical examples. It also showcases successful case studies on the application of q-RASAR modeling in medicinal chemistry, predictive toxicology, and materials sciences. The book also includes the tools used for q-RASAR model development for new users. It is a valuable resource for researchers and students interested in grasping the development algorithm of q-RASAR models and their application within specific research domains</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecules—Models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemistry—Data processing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hardcover, Softcover / Chemie/Theoretische Chemie</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Banerjee, Arkaprava</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-031-52057-0</subfield></datafield></record></collection> |
id | DE-604.BV049671292 |
illustrated | Illustrated |
indexdate | 2024-07-20T07:55:00Z |
institution | BVB |
isbn | 9783031520563 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-035014289 |
oclc_num | 1419207617 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | x, 91 Seiten Illustrationen 171 gr |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Springer |
record_format | marc |
series2 | SpringerBriefs in molecular science |
spelling | Roy, Kunal 1971- Verfasser (DE-588)1185508783 aut q-RASAR a path to predictive cheminformatics Kunal Roy, Arkaprava Banerjee Cham Springer [2024] x, 91 Seiten Illustrationen 171 gr txt rdacontent n rdamedia nc rdacarrier SpringerBriefs in molecular science Chemical Information and Molecular Similarity.- Read-across and Quantitative Structure-activity Relationships (QSAR) for Making Predictions and Data Gap-Filling.- Quantitative Read-Across (q-RA) and Quantitative Read-Across Structure-Activity Relationships (q-RASAR) – Genesis and Model Development.- Tools, Applications, and Case Studies (q-RA and q-RASAR).- Future Prospects. This brief offers an introduction to the fascinating new field of quantitative read-across structure-activity relationships (q-RASAR) as a cheminformatics modeling approach in the background of quantitative structure-activity relationships (QSAR) and read-across (RA) as data gap-filling methods. It discusses the genesis and model development of q-RASAR models demonstrating practical examples. It also showcases successful case studies on the application of q-RASAR modeling in medicinal chemistry, predictive toxicology, and materials sciences. The book also includes the tools used for q-RASAR model development for new users. It is a valuable resource for researchers and students interested in grasping the development algorithm of q-RASAR models and their application within specific research domains bicssc bisacsh Quantum physics Computer simulation Molecules—Models Chemistry—Data processing Hardcover, Softcover / Chemie/Theoretische Chemie Banerjee, Arkaprava Verfasser aut Erscheint auch als Online-Ausgabe 978-3-031-52057-0 |
spellingShingle | Roy, Kunal 1971- Banerjee, Arkaprava q-RASAR a path to predictive cheminformatics bicssc bisacsh Quantum physics Computer simulation Molecules—Models Chemistry—Data processing |
title | q-RASAR a path to predictive cheminformatics |
title_auth | q-RASAR a path to predictive cheminformatics |
title_exact_search | q-RASAR a path to predictive cheminformatics |
title_full | q-RASAR a path to predictive cheminformatics Kunal Roy, Arkaprava Banerjee |
title_fullStr | q-RASAR a path to predictive cheminformatics Kunal Roy, Arkaprava Banerjee |
title_full_unstemmed | q-RASAR a path to predictive cheminformatics Kunal Roy, Arkaprava Banerjee |
title_short | q-RASAR |
title_sort | q rasar a path to predictive cheminformatics |
title_sub | a path to predictive cheminformatics |
topic | bicssc bisacsh Quantum physics Computer simulation Molecules—Models Chemistry—Data processing |
topic_facet | bicssc bisacsh Quantum physics Computer simulation Molecules—Models Chemistry—Data processing |
work_keys_str_mv | AT roykunal qrasarapathtopredictivecheminformatics AT banerjeearkaprava qrasarapathtopredictivecheminformatics |