Predicting natural disasters with AI and machine learning:
In a world where the relentless force of natural and man-made disasters threatens societies, the need for effective disaster management has never been more critical. Predicting Natural Disasters With AI and Machine Learning addresses the challenges of disasters and charts a path toward proactive sol...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hershey, Pennsylvania
IGI Global
c2024
|
Schlagworte: | |
Online-Zugang: | DE-91 DE-898 DE-1050 URL des Erstveröffentlichers |
Zusammenfassung: | In a world where the relentless force of natural and man-made disasters threatens societies, the need for effective disaster management has never been more critical. Predicting Natural Disasters With AI and Machine Learning addresses the challenges of disasters and charts a path toward proactive solutions by applying artificial intelligence (AI) and machine learning (ML).This book begins by interpreting the nature of disasters, clearly distinguishing between natural and man-made hazards. It delves into the intricacies of disaster risk reduction (DRR), emphasizing the human contribution to most disasters. Recognizing the necessity for a multifaceted approach, the book advocates the four 'R's - Risk Mitigation, Response Readiness, Response Execution, and Recovery - as integral components of comprehensive disaster management.This book explores various AI and ML applications designed to predict, manage, and mitigate the impact of natural disasters, focusing on natural language processing, and early warning systems. The contrast between weak AI, simulating human intelligence for specific tasks, and strong AI, capable of autonomous problem-solving, is thoroughly examined in the context of disaster management. Its chapters systematically address critical issues, including real-world data handling, challenges related to data accessibility, completeness, security, privacy, and ethical considerations. |
Beschreibung: | 1 Online-Ressource (340 Seiten) |
ISBN: | 9798369322819 |
DOI: | 10.4018/979-8-3693-2280-2 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV049645369 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 240411s2024 xx o|||| 00||| eng d | ||
020 | |a 9798369322819 |9 979-83-69322-81-9 | ||
024 | 7 | |a 10.4018/979-8-3693-2280-2 |2 doi | |
035 | |a (ZDB-98-IGB)00332242 | ||
035 | |a (OCoLC)1430762640 | ||
035 | |a (DE-599)BVBBV049645369 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91 |a DE-898 |a DE-1050 | ||
082 | 0 | |a 363.34/72 | |
245 | 1 | 0 | |a Predicting natural disasters with AI and machine learning |c D. Satishkumar, M. Sivaraja, editors |
246 | 1 | 3 | |a Predicting natural disasters with artificial intelligence and machine learning |
264 | 1 | |a Hershey, Pennsylvania |b IGI Global |c c2024 | |
300 | |a 1 Online-Ressource (340 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a In a world where the relentless force of natural and man-made disasters threatens societies, the need for effective disaster management has never been more critical. Predicting Natural Disasters With AI and Machine Learning addresses the challenges of disasters and charts a path toward proactive solutions by applying artificial intelligence (AI) and machine learning (ML).This book begins by interpreting the nature of disasters, clearly distinguishing between natural and man-made hazards. It delves into the intricacies of disaster risk reduction (DRR), emphasizing the human contribution to most disasters. Recognizing the necessity for a multifaceted approach, the book advocates the four 'R's - Risk Mitigation, Response Readiness, Response Execution, and Recovery - as integral components of comprehensive disaster management.This book explores various AI and ML applications designed to predict, manage, and mitigate the impact of natural disasters, focusing on natural language processing, and early warning systems. The contrast between weak AI, simulating human intelligence for specific tasks, and strong AI, capable of autonomous problem-solving, is thoroughly examined in the context of disaster management. Its chapters systematically address critical issues, including real-world data handling, challenges related to data accessibility, completeness, security, privacy, and ethical considerations. | ||
650 | 4 | |a Environmental geotechnology | |
650 | 4 | |a Natural disasters |x Forecasting | |
650 | 4 | |a Natural disasters |x Remote sensing | |
700 | 1 | |a D., Satishkumar |d 1980- |4 edt | |
700 | 1 | |a Muthusamy, Sivaraja |d 1974- |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9798369322802 |
856 | 4 | 0 | |u https://doi.org/10.4018/979-8-3693-2280-2 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-98-IGB | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034988915 | |
966 | e | |u https://doi.org/10.4018/979-8-3693-2280-2 |l DE-91 |p ZDB-98-IGB |q TUM_Paketkauf_2024 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.4018/979-8-3693-2280-2 |l DE-898 |p ZDB-98-IGB |q FHR_PDA_IGB |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.4018/979-8-3693-2280-2 |l DE-1050 |p ZDB-98-IGB |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1818715323819360256 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | D., Satishkumar 1980- Muthusamy, Sivaraja 1974- |
author2_role | edt edt |
author2_variant | s d sd s m sm |
author_facet | D., Satishkumar 1980- Muthusamy, Sivaraja 1974- |
building | Verbundindex |
bvnumber | BV049645369 |
collection | ZDB-98-IGB |
ctrlnum | (ZDB-98-IGB)00332242 (OCoLC)1430762640 (DE-599)BVBBV049645369 |
dewey-full | 363.34/72 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 363 - Other social problems and services |
dewey-raw | 363.34/72 |
dewey-search | 363.34/72 |
dewey-sort | 3363.34 272 |
dewey-tens | 360 - Social problems and services; associations |
discipline | Soziologie |
discipline_str_mv | Soziologie |
doi_str_mv | 10.4018/979-8-3693-2280-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV049645369</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240411s2024 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9798369322819</subfield><subfield code="9">979-83-69322-81-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.4018/979-8-3693-2280-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-98-IGB)00332242</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1430762640</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049645369</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-1050</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">363.34/72</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predicting natural disasters with AI and machine learning</subfield><subfield code="c">D. Satishkumar, M. Sivaraja, editors</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Predicting natural disasters with artificial intelligence and machine learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hershey, Pennsylvania</subfield><subfield code="b">IGI Global</subfield><subfield code="c">c2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (340 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In a world where the relentless force of natural and man-made disasters threatens societies, the need for effective disaster management has never been more critical. Predicting Natural Disasters With AI and Machine Learning addresses the challenges of disasters and charts a path toward proactive solutions by applying artificial intelligence (AI) and machine learning (ML).This book begins by interpreting the nature of disasters, clearly distinguishing between natural and man-made hazards. It delves into the intricacies of disaster risk reduction (DRR), emphasizing the human contribution to most disasters. Recognizing the necessity for a multifaceted approach, the book advocates the four 'R's - Risk Mitigation, Response Readiness, Response Execution, and Recovery - as integral components of comprehensive disaster management.This book explores various AI and ML applications designed to predict, manage, and mitigate the impact of natural disasters, focusing on natural language processing, and early warning systems. The contrast between weak AI, simulating human intelligence for specific tasks, and strong AI, capable of autonomous problem-solving, is thoroughly examined in the context of disaster management. Its chapters systematically address critical issues, including real-world data handling, challenges related to data accessibility, completeness, security, privacy, and ethical considerations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environmental geotechnology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural disasters</subfield><subfield code="x">Forecasting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Natural disasters</subfield><subfield code="x">Remote sensing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">D., Satishkumar</subfield><subfield code="d">1980-</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Muthusamy, Sivaraja</subfield><subfield code="d">1974-</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9798369322802</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.4018/979-8-3693-2280-2</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-98-IGB</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034988915</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/979-8-3693-2280-2</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="q">TUM_Paketkauf_2024</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/979-8-3693-2280-2</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="q">FHR_PDA_IGB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.4018/979-8-3693-2280-2</subfield><subfield code="l">DE-1050</subfield><subfield code="p">ZDB-98-IGB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049645369 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:39:47Z |
indexdate | 2024-12-17T19:01:33Z |
institution | BVB |
isbn | 9798369322819 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034988915 |
oclc_num | 1430762640 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-1050 |
owner_facet | DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-1050 |
physical | 1 Online-Ressource (340 Seiten) |
psigel | ZDB-98-IGB ZDB-98-IGB TUM_Paketkauf_2024 ZDB-98-IGB FHR_PDA_IGB |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | IGI Global |
record_format | marc |
spelling | Predicting natural disasters with AI and machine learning D. Satishkumar, M. Sivaraja, editors Predicting natural disasters with artificial intelligence and machine learning Hershey, Pennsylvania IGI Global c2024 1 Online-Ressource (340 Seiten) txt rdacontent c rdamedia cr rdacarrier In a world where the relentless force of natural and man-made disasters threatens societies, the need for effective disaster management has never been more critical. Predicting Natural Disasters With AI and Machine Learning addresses the challenges of disasters and charts a path toward proactive solutions by applying artificial intelligence (AI) and machine learning (ML).This book begins by interpreting the nature of disasters, clearly distinguishing between natural and man-made hazards. It delves into the intricacies of disaster risk reduction (DRR), emphasizing the human contribution to most disasters. Recognizing the necessity for a multifaceted approach, the book advocates the four 'R's - Risk Mitigation, Response Readiness, Response Execution, and Recovery - as integral components of comprehensive disaster management.This book explores various AI and ML applications designed to predict, manage, and mitigate the impact of natural disasters, focusing on natural language processing, and early warning systems. The contrast between weak AI, simulating human intelligence for specific tasks, and strong AI, capable of autonomous problem-solving, is thoroughly examined in the context of disaster management. Its chapters systematically address critical issues, including real-world data handling, challenges related to data accessibility, completeness, security, privacy, and ethical considerations. Environmental geotechnology Natural disasters Forecasting Natural disasters Remote sensing D., Satishkumar 1980- edt Muthusamy, Sivaraja 1974- edt Erscheint auch als Druck-Ausgabe 9798369322802 https://doi.org/10.4018/979-8-3693-2280-2 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Predicting natural disasters with AI and machine learning Environmental geotechnology Natural disasters Forecasting Natural disasters Remote sensing |
title | Predicting natural disasters with AI and machine learning |
title_alt | Predicting natural disasters with artificial intelligence and machine learning |
title_auth | Predicting natural disasters with AI and machine learning |
title_exact_search | Predicting natural disasters with AI and machine learning |
title_exact_search_txtP | Predicting natural disasters with AI and machine learning |
title_full | Predicting natural disasters with AI and machine learning D. Satishkumar, M. Sivaraja, editors |
title_fullStr | Predicting natural disasters with AI and machine learning D. Satishkumar, M. Sivaraja, editors |
title_full_unstemmed | Predicting natural disasters with AI and machine learning D. Satishkumar, M. Sivaraja, editors |
title_short | Predicting natural disasters with AI and machine learning |
title_sort | predicting natural disasters with ai and machine learning |
topic | Environmental geotechnology Natural disasters Forecasting Natural disasters Remote sensing |
topic_facet | Environmental geotechnology Natural disasters Forecasting Natural disasters Remote sensing |
url | https://doi.org/10.4018/979-8-3693-2280-2 |
work_keys_str_mv | AT dsatishkumar predictingnaturaldisasterswithaiandmachinelearning AT muthusamysivaraja predictingnaturaldisasterswithaiandmachinelearning AT dsatishkumar predictingnaturaldisasterswithartificialintelligenceandmachinelearning AT muthusamysivaraja predictingnaturaldisasterswithartificialintelligenceandmachinelearning |