Algorithms for measurement invariance testing: contrasts and connections
Latent variable models are a powerful tool for measuring many of the phenomena in which developmental psychologists are often interested. If these phenomena are not measured equally well among all participants, this would result in biased inferences about how they unfold throughout development. In t...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2023
|
Schriftenreihe: | Cambridge elements
|
Schlagworte: | |
Online-Zugang: | BSB01 UBG01 Volltext |
Zusammenfassung: | Latent variable models are a powerful tool for measuring many of the phenomena in which developmental psychologists are often interested. If these phenomena are not measured equally well among all participants, this would result in biased inferences about how they unfold throughout development. In the absence of such biases, measurement invariance is achieved; if this bias is present, differential item functioning (DIF) would occur. This Element introduces the testing of measurement invariance/DIF through nonlinear factor analysis. After introducing models which are used to study these questions, the Element uses them to formulate different definitions of measurement invariance and DIF. It also focuses on different procedures for locating and quantifying these effects. The Element finally provides recommendations for researchers about how to navigate these options to make valid inferences about measurement in their own data |
Beschreibung: | Title from publisher's bibliographic system (viewed on 15 Dec 2023) |
Beschreibung: | 1 Online-Ressource (84 Seiten) |
ISBN: | 9781009303408 |
DOI: | 10.1017/9781009303408 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV049643856 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 240410s2023 |||| o||u| ||||||eng d | ||
020 | |a 9781009303408 |c Online |9 978-1-009-30340-8 | ||
024 | 7 | |a 10.1017/9781009303408 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781009303408 | ||
035 | |a (DE-599)BVBBV049643856 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-473 | ||
082 | 0 | |a 155 | |
100 | 1 | |a Cole, Veronica T. |4 aut | |
245 | 1 | 0 | |a Algorithms for measurement invariance testing |b contrasts and connections |c Veronica T. Cole, Conor H. Lacey |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2023 | |
300 | |a 1 Online-Ressource (84 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge elements | |
500 | |a Title from publisher's bibliographic system (viewed on 15 Dec 2023) | ||
520 | |a Latent variable models are a powerful tool for measuring many of the phenomena in which developmental psychologists are often interested. If these phenomena are not measured equally well among all participants, this would result in biased inferences about how they unfold throughout development. In the absence of such biases, measurement invariance is achieved; if this bias is present, differential item functioning (DIF) would occur. This Element introduces the testing of measurement invariance/DIF through nonlinear factor analysis. After introducing models which are used to study these questions, the Element uses them to formulate different definitions of measurement invariance and DIF. It also focuses on different procedures for locating and quantifying these effects. The Element finally provides recommendations for researchers about how to navigate these options to make valid inferences about measurement in their own data | ||
650 | 4 | |a Developmental psychology / Statistical methods | |
650 | 4 | |a Psychometrics / Statistical methods | |
650 | 4 | |a Algorithms | |
700 | 1 | |a Lacey, Conor H. |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-009-45417-9 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-009-30338-5 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781009303408 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034987436 | ||
966 | e | |u https://doi.org/10.1017/9781009303408 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009303408 |l UBG01 |p ZDB-20-CBO |q UBG_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804186556244688896 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Cole, Veronica T. Lacey, Conor H. |
author_facet | Cole, Veronica T. Lacey, Conor H. |
author_role | aut aut |
author_sort | Cole, Veronica T. |
author_variant | v t c vt vtc c h l ch chl |
building | Verbundindex |
bvnumber | BV049643856 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781009303408 (DE-599)BVBBV049643856 |
dewey-full | 155 |
dewey-hundreds | 100 - Philosophy & psychology |
dewey-ones | 155 - Differential & developmental psychology |
dewey-raw | 155 |
dewey-search | 155 |
dewey-sort | 3155 |
dewey-tens | 150 - Psychology |
discipline | Psychologie |
discipline_str_mv | Psychologie |
doi_str_mv | 10.1017/9781009303408 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02605nmm a2200433zc 4500</leader><controlfield tag="001">BV049643856</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240410s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009303408</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-009-30340-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781009303408</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781009303408</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049643856</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">155</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cole, Veronica T.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Algorithms for measurement invariance testing</subfield><subfield code="b">contrasts and connections</subfield><subfield code="c">Veronica T. Cole, Conor H. Lacey</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (84 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge elements</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 15 Dec 2023)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Latent variable models are a powerful tool for measuring many of the phenomena in which developmental psychologists are often interested. If these phenomena are not measured equally well among all participants, this would result in biased inferences about how they unfold throughout development. In the absence of such biases, measurement invariance is achieved; if this bias is present, differential item functioning (DIF) would occur. This Element introduces the testing of measurement invariance/DIF through nonlinear factor analysis. After introducing models which are used to study these questions, the Element uses them to formulate different definitions of measurement invariance and DIF. It also focuses on different procedures for locating and quantifying these effects. The Element finally provides recommendations for researchers about how to navigate these options to make valid inferences about measurement in their own data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Developmental psychology / Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Psychometrics / Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algorithms</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lacey, Conor H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-009-45417-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-009-30338-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781009303408</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034987436</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009303408</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009303408</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049643856 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:39:38Z |
indexdate | 2024-07-10T10:13:00Z |
institution | BVB |
isbn | 9781009303408 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034987436 |
open_access_boolean | |
owner | DE-12 DE-473 DE-BY-UBG |
owner_facet | DE-12 DE-473 DE-BY-UBG |
physical | 1 Online-Ressource (84 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO UBG_PDA_CBO |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge elements |
spelling | Cole, Veronica T. aut Algorithms for measurement invariance testing contrasts and connections Veronica T. Cole, Conor H. Lacey Cambridge Cambridge University Press 2023 1 Online-Ressource (84 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge elements Title from publisher's bibliographic system (viewed on 15 Dec 2023) Latent variable models are a powerful tool for measuring many of the phenomena in which developmental psychologists are often interested. If these phenomena are not measured equally well among all participants, this would result in biased inferences about how they unfold throughout development. In the absence of such biases, measurement invariance is achieved; if this bias is present, differential item functioning (DIF) would occur. This Element introduces the testing of measurement invariance/DIF through nonlinear factor analysis. After introducing models which are used to study these questions, the Element uses them to formulate different definitions of measurement invariance and DIF. It also focuses on different procedures for locating and quantifying these effects. The Element finally provides recommendations for researchers about how to navigate these options to make valid inferences about measurement in their own data Developmental psychology / Statistical methods Psychometrics / Statistical methods Algorithms Lacey, Conor H. aut Erscheint auch als Druck-Ausgabe 978-1-009-45417-9 Erscheint auch als Druck-Ausgabe 978-1-009-30338-5 https://doi.org/10.1017/9781009303408 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Cole, Veronica T. Lacey, Conor H. Algorithms for measurement invariance testing contrasts and connections Developmental psychology / Statistical methods Psychometrics / Statistical methods Algorithms |
title | Algorithms for measurement invariance testing contrasts and connections |
title_auth | Algorithms for measurement invariance testing contrasts and connections |
title_exact_search | Algorithms for measurement invariance testing contrasts and connections |
title_exact_search_txtP | Algorithms for measurement invariance testing contrasts and connections |
title_full | Algorithms for measurement invariance testing contrasts and connections Veronica T. Cole, Conor H. Lacey |
title_fullStr | Algorithms for measurement invariance testing contrasts and connections Veronica T. Cole, Conor H. Lacey |
title_full_unstemmed | Algorithms for measurement invariance testing contrasts and connections Veronica T. Cole, Conor H. Lacey |
title_short | Algorithms for measurement invariance testing |
title_sort | algorithms for measurement invariance testing contrasts and connections |
title_sub | contrasts and connections |
topic | Developmental psychology / Statistical methods Psychometrics / Statistical methods Algorithms |
topic_facet | Developmental psychology / Statistical methods Psychometrics / Statistical methods Algorithms |
url | https://doi.org/10.1017/9781009303408 |
work_keys_str_mv | AT coleveronicat algorithmsformeasurementinvariancetestingcontrastsandconnections AT laceyconorh algorithmsformeasurementinvariancetestingcontrastsandconnections |