Industrial process plants: global optimization of utility systems
Removing the barriers to the Global Optimization of Plant Utility Systems by providing practical tools and techniques to deal with these unique challenges is the purpose of this book. The operating cost of a typical Plant Utility System of a typical Industrial Production Process Plant is enormous -...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2024]
|
Schriftenreihe: | De Gruyter STEM
|
Schlagworte: | |
Online-Zugang: | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-703 DE-739 URL des Erstveröffentlichers |
Zusammenfassung: | Removing the barriers to the Global Optimization of Plant Utility Systems by providing practical tools and techniques to deal with these unique challenges is the purpose of this book. The operating cost of a typical Plant Utility System of a typical Industrial Production Process Plant is enormous - often in tens if not hundreds of millions of dollars per Annum. With so much money at stake, one would expect that heroic optimization efforts would be made to reduce the operating cost, however such is usually not the case. One reason for this complacency is that Plant Utility Systems are usually "cost centers" in Process Plants and their operating cost is prorated amongst the various Production Units, so it suffers from what is at times referred to as "the tragedy of the commons". Another reason for this complacency is that the Plant Utility System structure is significantly different than that of other Production Units, as for flexibility and safety reasons it has a large spare capacity to meet increased utility demand during startups, shutdowns, and emergencies. The existence of a spare equipment necessitates optimization of discrete decisions, whereby traditional optimization techniques do not readily apply. Part of the problem is that the traditional engineering curriculum primarily emphasizes only one of the many optimization methods, called Non-Linear Programming (NLP). Although NLP can address large classes of optimization problems, it has fairly stringent requirements that all describing relationships (or functions) be continuous and have continuous derivatives. Additionally, in general, NLP only guarantees a local but not the global optimum. Another optimization method is particularly well suited for modeling Plant Utility Systems is called Mixed Integer Linear Programming (MILP). And unlike NLP, MILP methods can guarantee global optimum, which is very reassuring. MILP, however, does impose linearity requirements but as discussed in this book there are techniques to overcome this limitation |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 06. Mrz 2024) |
Beschreibung: | 1 Online-Ressource (XVI, 241 Seiten) |
ISBN: | 9783111020679 |
DOI: | 10.1515/9783111020679 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV049628006 | ||
003 | DE-604 | ||
005 | 20250122 | ||
007 | cr|uuu---uuuuu | ||
008 | 240326s2024 xx o|||| 00||| eng d | ||
020 | |a 9783111020679 |9 978-3-11-102067-9 | ||
024 | 7 | |a 10.1515/9783111020679 |2 doi | |
035 | |a (ZDB-23-DGG)9783111020679 | ||
035 | |a (OCoLC)1429566957 | ||
035 | |a (DE-599)BVBBV049628006 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1046 |a DE-858 |a DE-859 |a DE-860 |a DE-739 |a DE-703 | ||
082 | 0 | |a 670.42 | |
084 | |a VN 7320 |0 (DE-625)147617:253 |2 rvk | ||
100 | 1 | |a Nath, Ravi |e Verfasser |0 (DE-588)1328151875 |4 aut | |
245 | 1 | 0 | |a Industrial process plants |b global optimization of utility systems |c Ravi Nath |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2024] | |
264 | 4 | |c © 2024 | |
300 | |a 1 Online-Ressource (XVI, 241 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter STEM | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 06. Mrz 2024) | ||
520 | |a Removing the barriers to the Global Optimization of Plant Utility Systems by providing practical tools and techniques to deal with these unique challenges is the purpose of this book. The operating cost of a typical Plant Utility System of a typical Industrial Production Process Plant is enormous - often in tens if not hundreds of millions of dollars per Annum. With so much money at stake, one would expect that heroic optimization efforts would be made to reduce the operating cost, however such is usually not the case. One reason for this complacency is that Plant Utility Systems are usually "cost centers" in Process Plants and their operating cost is prorated amongst the various Production Units, so it suffers from what is at times referred to as "the tragedy of the commons". | ||
520 | |a Another reason for this complacency is that the Plant Utility System structure is significantly different than that of other Production Units, as for flexibility and safety reasons it has a large spare capacity to meet increased utility demand during startups, shutdowns, and emergencies. The existence of a spare equipment necessitates optimization of discrete decisions, whereby traditional optimization techniques do not readily apply. Part of the problem is that the traditional engineering curriculum primarily emphasizes only one of the many optimization methods, called Non-Linear Programming (NLP). Although NLP can address large classes of optimization problems, it has fairly stringent requirements that all describing relationships (or functions) be continuous and have continuous derivatives. Additionally, in general, NLP only guarantees a local but not the global optimum. | ||
520 | |a Another optimization method is particularly well suited for modeling Plant Utility Systems is called Mixed Integer Linear Programming (MILP). And unlike NLP, MILP methods can guarantee global optimum, which is very reassuring. MILP, however, does impose linearity requirements but as discussed in this book there are techniques to overcome this limitation | ||
546 | |a In English | ||
650 | 4 | |a Apparate und Anlagen | |
650 | 4 | |a Prozeßoptimierung | |
650 | 4 | |a Technische Chemie | |
650 | 4 | |a Verfahrenstechnik | |
650 | 7 | |a TECHNOLOGY & ENGINEERING / Systems Engineering |2 bisacsh | |
650 | 0 | 7 | |a Energietechnische Anlage |0 (DE-588)4196531-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ganzzahlige lineare Optimierung |0 (DE-588)4155949-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Betriebsverhalten |0 (DE-588)4138142-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wärmeversorgung |0 (DE-588)4064214-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschine |0 (DE-588)4037786-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gemischt-ganzzahlige Optimierung |0 (DE-588)4156566-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Industrieanlage |0 (DE-588)4026801-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kältetechnik |0 (DE-588)4029166-2 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Betriebsverhalten |0 (DE-588)4138142-7 |D s |
689 | 0 | 1 | |a Energietechnische Anlage |0 (DE-588)4196531-0 |D s |
689 | 0 | 2 | |a Ganzzahlige lineare Optimierung |0 (DE-588)4155949-6 |D s |
689 | 0 | 3 | |a Gemischt-ganzzahlige Optimierung |0 (DE-588)4156566-6 |D s |
689 | 0 | 4 | |a Industrieanlage |0 (DE-588)4026801-9 |D s |
689 | 0 | 5 | |a Kältetechnik |0 (DE-588)4029166-2 |D s |
689 | 0 | 6 | |a Maschine |0 (DE-588)4037786-6 |D s |
689 | 0 | 7 | |a Wärmeversorgung |0 (DE-588)4064214-8 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9783111015316 |
856 | 4 | 0 | |u https://doi.org/10.1515/9783111020679 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034971891 | |
966 | e | |u https://doi.org/10.1515/9783111020679 |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111020679 |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111020679 |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111020679 |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111020679 |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111020679 |l DE-703 |p ZDB-23-DGG |q UBT_P&C_2024_11_DeGruyter |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783111020679 |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1824508245372305408 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Nath, Ravi |
author_GND | (DE-588)1328151875 |
author_facet | Nath, Ravi |
author_role | aut |
author_sort | Nath, Ravi |
author_variant | r n rn |
building | Verbundindex |
bvnumber | BV049628006 |
classification_rvk | VN 7320 |
collection | ZDB-23-DGG |
ctrlnum | (ZDB-23-DGG)9783111020679 (OCoLC)1429566957 (DE-599)BVBBV049628006 |
dewey-full | 670.42 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 670 - Manufacturing |
dewey-raw | 670.42 |
dewey-search | 670.42 |
dewey-sort | 3670.42 |
dewey-tens | 670 - Manufacturing |
discipline | Chemie / Pharmazie Werkstoffwissenschaften / Fertigungstechnik |
discipline_str_mv | Werkstoffwissenschaften / Fertigungstechnik |
doi_str_mv | 10.1515/9783111020679 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV049628006</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20250122</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240326s2024 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783111020679</subfield><subfield code="9">978-3-11-102067-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783111020679</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783111020679</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1429566957</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049628006</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">670.42</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 7320</subfield><subfield code="0">(DE-625)147617:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nath, Ravi</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1328151875</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Industrial process plants</subfield><subfield code="b">global optimization of utility systems</subfield><subfield code="c">Ravi Nath</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 241 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter STEM</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 06. Mrz 2024)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Removing the barriers to the Global Optimization of Plant Utility Systems by providing practical tools and techniques to deal with these unique challenges is the purpose of this book. The operating cost of a typical Plant Utility System of a typical Industrial Production Process Plant is enormous - often in tens if not hundreds of millions of dollars per Annum. With so much money at stake, one would expect that heroic optimization efforts would be made to reduce the operating cost, however such is usually not the case. One reason for this complacency is that Plant Utility Systems are usually "cost centers" in Process Plants and their operating cost is prorated amongst the various Production Units, so it suffers from what is at times referred to as "the tragedy of the commons".</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Another reason for this complacency is that the Plant Utility System structure is significantly different than that of other Production Units, as for flexibility and safety reasons it has a large spare capacity to meet increased utility demand during startups, shutdowns, and emergencies. The existence of a spare equipment necessitates optimization of discrete decisions, whereby traditional optimization techniques do not readily apply. Part of the problem is that the traditional engineering curriculum primarily emphasizes only one of the many optimization methods, called Non-Linear Programming (NLP). Although NLP can address large classes of optimization problems, it has fairly stringent requirements that all describing relationships (or functions) be continuous and have continuous derivatives. Additionally, in general, NLP only guarantees a local but not the global optimum.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Another optimization method is particularly well suited for modeling Plant Utility Systems is called Mixed Integer Linear Programming (MILP). And unlike NLP, MILP methods can guarantee global optimum, which is very reassuring. MILP, however, does impose linearity requirements but as discussed in this book there are techniques to overcome this limitation</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apparate und Anlagen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prozeßoptimierung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technische Chemie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Verfahrenstechnik</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING / Systems Engineering</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Energietechnische Anlage</subfield><subfield code="0">(DE-588)4196531-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ganzzahlige lineare Optimierung</subfield><subfield code="0">(DE-588)4155949-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Betriebsverhalten</subfield><subfield code="0">(DE-588)4138142-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wärmeversorgung</subfield><subfield code="0">(DE-588)4064214-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschine</subfield><subfield code="0">(DE-588)4037786-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gemischt-ganzzahlige Optimierung</subfield><subfield code="0">(DE-588)4156566-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Industrieanlage</subfield><subfield code="0">(DE-588)4026801-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kältetechnik</subfield><subfield code="0">(DE-588)4029166-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Betriebsverhalten</subfield><subfield code="0">(DE-588)4138142-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Energietechnische Anlage</subfield><subfield code="0">(DE-588)4196531-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Ganzzahlige lineare Optimierung</subfield><subfield code="0">(DE-588)4155949-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Gemischt-ganzzahlige Optimierung</subfield><subfield code="0">(DE-588)4156566-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Industrieanlage</subfield><subfield code="0">(DE-588)4026801-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Kältetechnik</subfield><subfield code="0">(DE-588)4029166-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="6"><subfield code="a">Maschine</subfield><subfield code="0">(DE-588)4037786-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="7"><subfield code="a">Wärmeversorgung</subfield><subfield code="0">(DE-588)4064214-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9783111015316</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783111020679</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034971891</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111020679</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111020679</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111020679</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111020679</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111020679</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111020679</subfield><subfield code="l">DE-703</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UBT_P&C_2024_11_DeGruyter</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783111020679</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV049628006 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:38:00Z |
indexdate | 2025-02-19T17:37:33Z |
institution | BVB |
isbn | 9783111020679 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034971891 |
oclc_num | 1429566957 |
open_access_boolean | |
owner | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-739 DE-703 |
owner_facet | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-739 DE-703 |
physical | 1 Online-Ressource (XVI, 241 Seiten) |
psigel | ZDB-23-DGG ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UBT_P&C_2024_11_DeGruyter ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter STEM |
spelling | Nath, Ravi Verfasser (DE-588)1328151875 aut Industrial process plants global optimization of utility systems Ravi Nath Berlin ; Boston De Gruyter [2024] © 2024 1 Online-Ressource (XVI, 241 Seiten) txt rdacontent c rdamedia cr rdacarrier De Gruyter STEM Description based on online resource; title from PDF title page (publisher's Web site, viewed 06. Mrz 2024) Removing the barriers to the Global Optimization of Plant Utility Systems by providing practical tools and techniques to deal with these unique challenges is the purpose of this book. The operating cost of a typical Plant Utility System of a typical Industrial Production Process Plant is enormous - often in tens if not hundreds of millions of dollars per Annum. With so much money at stake, one would expect that heroic optimization efforts would be made to reduce the operating cost, however such is usually not the case. One reason for this complacency is that Plant Utility Systems are usually "cost centers" in Process Plants and their operating cost is prorated amongst the various Production Units, so it suffers from what is at times referred to as "the tragedy of the commons". Another reason for this complacency is that the Plant Utility System structure is significantly different than that of other Production Units, as for flexibility and safety reasons it has a large spare capacity to meet increased utility demand during startups, shutdowns, and emergencies. The existence of a spare equipment necessitates optimization of discrete decisions, whereby traditional optimization techniques do not readily apply. Part of the problem is that the traditional engineering curriculum primarily emphasizes only one of the many optimization methods, called Non-Linear Programming (NLP). Although NLP can address large classes of optimization problems, it has fairly stringent requirements that all describing relationships (or functions) be continuous and have continuous derivatives. Additionally, in general, NLP only guarantees a local but not the global optimum. Another optimization method is particularly well suited for modeling Plant Utility Systems is called Mixed Integer Linear Programming (MILP). And unlike NLP, MILP methods can guarantee global optimum, which is very reassuring. MILP, however, does impose linearity requirements but as discussed in this book there are techniques to overcome this limitation In English Apparate und Anlagen Prozeßoptimierung Technische Chemie Verfahrenstechnik TECHNOLOGY & ENGINEERING / Systems Engineering bisacsh Energietechnische Anlage (DE-588)4196531-0 gnd rswk-swf Ganzzahlige lineare Optimierung (DE-588)4155949-6 gnd rswk-swf Betriebsverhalten (DE-588)4138142-7 gnd rswk-swf Wärmeversorgung (DE-588)4064214-8 gnd rswk-swf Maschine (DE-588)4037786-6 gnd rswk-swf Gemischt-ganzzahlige Optimierung (DE-588)4156566-6 gnd rswk-swf Industrieanlage (DE-588)4026801-9 gnd rswk-swf Kältetechnik (DE-588)4029166-2 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Betriebsverhalten (DE-588)4138142-7 s Energietechnische Anlage (DE-588)4196531-0 s Ganzzahlige lineare Optimierung (DE-588)4155949-6 s Gemischt-ganzzahlige Optimierung (DE-588)4156566-6 s Industrieanlage (DE-588)4026801-9 s Kältetechnik (DE-588)4029166-2 s Maschine (DE-588)4037786-6 s Wärmeversorgung (DE-588)4064214-8 s DE-604 Erscheint auch als Druck-Ausgabe 9783111015316 https://doi.org/10.1515/9783111020679 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Nath, Ravi Industrial process plants global optimization of utility systems Apparate und Anlagen Prozeßoptimierung Technische Chemie Verfahrenstechnik TECHNOLOGY & ENGINEERING / Systems Engineering bisacsh Energietechnische Anlage (DE-588)4196531-0 gnd Ganzzahlige lineare Optimierung (DE-588)4155949-6 gnd Betriebsverhalten (DE-588)4138142-7 gnd Wärmeversorgung (DE-588)4064214-8 gnd Maschine (DE-588)4037786-6 gnd Gemischt-ganzzahlige Optimierung (DE-588)4156566-6 gnd Industrieanlage (DE-588)4026801-9 gnd Kältetechnik (DE-588)4029166-2 gnd |
subject_GND | (DE-588)4196531-0 (DE-588)4155949-6 (DE-588)4138142-7 (DE-588)4064214-8 (DE-588)4037786-6 (DE-588)4156566-6 (DE-588)4026801-9 (DE-588)4029166-2 (DE-588)4143413-4 |
title | Industrial process plants global optimization of utility systems |
title_auth | Industrial process plants global optimization of utility systems |
title_exact_search | Industrial process plants global optimization of utility systems |
title_exact_search_txtP | Industrial Process Plants Global Optimization of Utility Systems |
title_full | Industrial process plants global optimization of utility systems Ravi Nath |
title_fullStr | Industrial process plants global optimization of utility systems Ravi Nath |
title_full_unstemmed | Industrial process plants global optimization of utility systems Ravi Nath |
title_short | Industrial process plants |
title_sort | industrial process plants global optimization of utility systems |
title_sub | global optimization of utility systems |
topic | Apparate und Anlagen Prozeßoptimierung Technische Chemie Verfahrenstechnik TECHNOLOGY & ENGINEERING / Systems Engineering bisacsh Energietechnische Anlage (DE-588)4196531-0 gnd Ganzzahlige lineare Optimierung (DE-588)4155949-6 gnd Betriebsverhalten (DE-588)4138142-7 gnd Wärmeversorgung (DE-588)4064214-8 gnd Maschine (DE-588)4037786-6 gnd Gemischt-ganzzahlige Optimierung (DE-588)4156566-6 gnd Industrieanlage (DE-588)4026801-9 gnd Kältetechnik (DE-588)4029166-2 gnd |
topic_facet | Apparate und Anlagen Prozeßoptimierung Technische Chemie Verfahrenstechnik TECHNOLOGY & ENGINEERING / Systems Engineering Energietechnische Anlage Ganzzahlige lineare Optimierung Betriebsverhalten Wärmeversorgung Maschine Gemischt-ganzzahlige Optimierung Industrieanlage Kältetechnik Aufsatzsammlung |
url | https://doi.org/10.1515/9783111020679 |
work_keys_str_mv | AT nathravi industrialprocessplantsglobaloptimizationofutilitysystems |