Python 3 and Data Analytics Pocket Primer:
As part of the best-selling Pocket Primer series, this book is designed to introduce the reader to the basic concepts of data analytics using Python 3. It is intended to be a fast-paced introduction to some basic features of data analytics and also covers statistics, data visualization, and data cle...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dulles, VA
Mercury Learning and Information
[2021]
|
Schriftenreihe: | Pocket Primer
|
Schlagworte: | |
Online-Zugang: | FAW01 FAB01 FCO01 FHA01 FKE01 FLA01 UPA01 Volltext |
Zusammenfassung: | As part of the best-selling Pocket Primer series, this book is designed to introduce the reader to the basic concepts of data analytics using Python 3. It is intended to be a fast-paced introduction to some basic features of data analytics and also covers statistics, data visualization, and data cleaning. The book includes numerous code samples using NumPy, Pandas, Matplotlib, Seaborn, and features an appendix on regular expressions. Companion files with source code and color figures are available online by emailing the publisher with proof of purchase at info@merclearning.com. FEATURES: Includes a concise introduction to Python 3Provides a thorough introduction to data and data cleaningCovers NumPy and PandasIntroduces statistical concepts and data visualization (Matplotlib/Seaborn)Features an appendix on regular expressionsIncludes companion files with source code and figures |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 06. Mrz 2024) |
Beschreibung: | 1 Online-Ressource (238 Seiten) |
ISBN: | 9781683926535 |
DOI: | 10.1515/9781683926535 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV049627961 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 240326s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781683926535 |9 978-1-68392-653-5 | ||
024 | 7 | |a 10.1515/9781683926535 |2 doi | |
035 | |a (ZDB-23-DGG)9781683926535 | ||
035 | |a (DE-599)BVBBV049627961 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1046 |a DE-858 |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 | ||
082 | 0 | |a 006.312 |2 23 | |
100 | 1 | |a Campesato, Oswald |e Verfasser |4 aut | |
245 | 1 | 0 | |a Python 3 and Data Analytics Pocket Primer |c Oswald Campesato |
264 | 1 | |a Dulles, VA |b Mercury Learning and Information |c [2021] | |
264 | 4 | |c © 2021 | |
300 | |a 1 Online-Ressource (238 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Pocket Primer | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 06. Mrz 2024) | ||
520 | |a As part of the best-selling Pocket Primer series, this book is designed to introduce the reader to the basic concepts of data analytics using Python 3. It is intended to be a fast-paced introduction to some basic features of data analytics and also covers statistics, data visualization, and data cleaning. The book includes numerous code samples using NumPy, Pandas, Matplotlib, Seaborn, and features an appendix on regular expressions. Companion files with source code and color figures are available online by emailing the publisher with proof of purchase at info@merclearning.com. FEATURES: Includes a concise introduction to Python 3Provides a thorough introduction to data and data cleaningCovers NumPy and PandasIntroduces statistical concepts and data visualization (Matplotlib/Seaborn)Features an appendix on regular expressionsIncludes companion files with source code and figures | ||
546 | |a In English | ||
650 | 4 | |a Data | |
650 | 4 | |a Programming | |
650 | 7 | |a COMPUTERS / Programming Languages / Python |2 bisacsh | |
650 | 4 | |a Data mining | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781683926542 |
856 | 4 | 0 | |u https://doi.org/10.1515/9781683926535 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034971846 | ||
966 | e | |u https://doi.org/10.1515/9781683926535 |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683926535 |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683926535 |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683926535 |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683926535 |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683926535 |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683926535 |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804186527516852224 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Campesato, Oswald |
author_facet | Campesato, Oswald |
author_role | aut |
author_sort | Campesato, Oswald |
author_variant | o c oc |
building | Verbundindex |
bvnumber | BV049627961 |
collection | ZDB-23-DGG |
ctrlnum | (ZDB-23-DGG)9781683926535 (DE-599)BVBBV049627961 |
dewey-full | 006.312 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.312 |
dewey-search | 006.312 |
dewey-sort | 16.312 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.1515/9781683926535 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03073nmm a2200505zc 4500</leader><controlfield tag="001">BV049627961</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240326s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781683926535</subfield><subfield code="9">978-1-68392-653-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781683926535</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781683926535</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049627961</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.312</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Campesato, Oswald</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Python 3 and Data Analytics Pocket Primer</subfield><subfield code="c">Oswald Campesato</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dulles, VA</subfield><subfield code="b">Mercury Learning and Information</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (238 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Pocket Primer</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 06. Mrz 2024)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As part of the best-selling Pocket Primer series, this book is designed to introduce the reader to the basic concepts of data analytics using Python 3. It is intended to be a fast-paced introduction to some basic features of data analytics and also covers statistics, data visualization, and data cleaning. The book includes numerous code samples using NumPy, Pandas, Matplotlib, Seaborn, and features an appendix on regular expressions. Companion files with source code and color figures are available online by emailing the publisher with proof of purchase at info@merclearning.com. FEATURES: Includes a concise introduction to Python 3Provides a thorough introduction to data and data cleaningCovers NumPy and PandasIntroduces statistical concepts and data visualization (Matplotlib/Seaborn)Features an appendix on regular expressionsIncludes companion files with source code and figures</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Programming</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Programming Languages / Python</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781683926542</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781683926535</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034971846</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683926535</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683926535</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683926535</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683926535</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683926535</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683926535</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683926535</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049627961 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:38:00Z |
indexdate | 2024-07-10T10:12:33Z |
institution | BVB |
isbn | 9781683926535 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034971846 |
open_access_boolean | |
owner | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 |
owner_facet | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 |
physical | 1 Online-Ressource (238 Seiten) |
psigel | ZDB-23-DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Mercury Learning and Information |
record_format | marc |
series2 | Pocket Primer |
spelling | Campesato, Oswald Verfasser aut Python 3 and Data Analytics Pocket Primer Oswald Campesato Dulles, VA Mercury Learning and Information [2021] © 2021 1 Online-Ressource (238 Seiten) txt rdacontent c rdamedia cr rdacarrier Pocket Primer Description based on online resource; title from PDF title page (publisher's Web site, viewed 06. Mrz 2024) As part of the best-selling Pocket Primer series, this book is designed to introduce the reader to the basic concepts of data analytics using Python 3. It is intended to be a fast-paced introduction to some basic features of data analytics and also covers statistics, data visualization, and data cleaning. The book includes numerous code samples using NumPy, Pandas, Matplotlib, Seaborn, and features an appendix on regular expressions. Companion files with source code and color figures are available online by emailing the publisher with proof of purchase at info@merclearning.com. FEATURES: Includes a concise introduction to Python 3Provides a thorough introduction to data and data cleaningCovers NumPy and PandasIntroduces statistical concepts and data visualization (Matplotlib/Seaborn)Features an appendix on regular expressionsIncludes companion files with source code and figures In English Data Programming COMPUTERS / Programming Languages / Python bisacsh Data mining Erscheint auch als Druck-Ausgabe 9781683926542 https://doi.org/10.1515/9781683926535 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Campesato, Oswald Python 3 and Data Analytics Pocket Primer Data Programming COMPUTERS / Programming Languages / Python bisacsh Data mining |
title | Python 3 and Data Analytics Pocket Primer |
title_auth | Python 3 and Data Analytics Pocket Primer |
title_exact_search | Python 3 and Data Analytics Pocket Primer |
title_exact_search_txtP | Python 3 and Data Analytics Pocket Primer |
title_full | Python 3 and Data Analytics Pocket Primer Oswald Campesato |
title_fullStr | Python 3 and Data Analytics Pocket Primer Oswald Campesato |
title_full_unstemmed | Python 3 and Data Analytics Pocket Primer Oswald Campesato |
title_short | Python 3 and Data Analytics Pocket Primer |
title_sort | python 3 and data analytics pocket primer |
topic | Data Programming COMPUTERS / Programming Languages / Python bisacsh Data mining |
topic_facet | Data Programming COMPUTERS / Programming Languages / Python Data mining |
url | https://doi.org/10.1515/9781683926535 |
work_keys_str_mv | AT campesatooswald python3anddataanalyticspocketprimer |