Mapping texts: computational text analysis for the social sciences
Mapping Texts is the first introduction to computational text analysis that simultaneously blends conceptual treatments with practical, hands-on examples that walk the reader through how to conduct text analysis projects with real data. The book shows how to conduct text analysis in the R statistica...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford
Oxford University Press
2024
|
Schriftenreihe: | Computational social science series
|
Zusammenfassung: | Mapping Texts is the first introduction to computational text analysis that simultaneously blends conceptual treatments with practical, hands-on examples that walk the reader through how to conduct text analysis projects with real data. The book shows how to conduct text analysis in the R statistical computing environment--a popular programming language in data science. Cover -- Advance Praise for Mapping Texts -- Mapping Texts: Computational Text Analysis for the Social Sciences -- Copyright -- Dediaction -- Contents -- Preface -- What You Will Learn -- What We Left Out -- Acknowledgments -- Part I: Bounding Texts -- 1: Text in Context -- What Is Language? -- What Is Text? -- 2: Corpus Building -- Texts Are Not People -- Balance, Range, and Representativeness -- Text Metadata -- Authors and Audiences -- Time and Location -- Domains and Media -- Text Data -- Languages and Dialects -- Genres and Topics -- Registers and Styles -- Redrawing Boundaries -- Part II: Prerequisites -- 3: Computing Basics -- Brass Tacks -- Coding Environments -- Data Objects, Types, and Structures -- Dialects of R -- Control Processes: Functions, Loops, and Apply -- Installing and Loading Packages -- Using Python in R -- Data Visualization -- Where to from Here -- 4: Math Basics -- The Fundamentals -- Comparing Vectors -- Dot Product -- Euclidean Distance and Cosine Similarity -- Correlation -- Regression -- Comparing Distributions -- Central Tendency -- Dispersion -- Types of Distributions -- Our Dear Friend, the Matrix -- Matrix Projection -- Vector Spaces and Singular Value Decomposition -- Graphs and Matrix Projection -- A Little Math Goes a Long Way -- Part III: Foundations -- 5: Acquiring Text -- Public Text Datasets -- Optical Character Recognition -- Automated Audio Transcription -- Application Programming Interfaces (APIs) -- Automated Web Scraping -- Legal and Ethical Side of Scraping -- Terms of Service -- Intellectual Property -- Individual and Organizational Privacy -- 6: From Text to Numbers -- Units of Analysis -- Tokenizing -- Chunking -- Document Features -- Sparsity -- Dedicated DTM Functions -- Token Distributions -- Zipf's Law and Herdan-heaps' Law -- Weighting and Norming -- Relative Term Frequency. |
Beschreibung: | XV, 307 Seiten |
ISBN: | 9780197756881 |
Internformat
MARC
LEADER | 00000nam a22000001c 4500 | ||
---|---|---|---|
001 | BV049623405 | ||
003 | DE-604 | ||
005 | 20250205 | ||
007 | t| | ||
008 | 240321s2024 xx |||| 00||| eng d | ||
020 | |a 9780197756881 |9 978-0-19-775688-1 | ||
035 | |a (DE-599)BVBBV049623405 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-1102 | ||
084 | |a ST 650 |0 (DE-625)143687: |2 rvk | ||
100 | 1 | |a Stoltz, Dustin S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mapping texts |b computational text analysis for the social sciences |
264 | 1 | |a Oxford |b Oxford University Press |c 2024 | |
300 | |a XV, 307 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Computational social science series | |
520 | 3 | |a Mapping Texts is the first introduction to computational text analysis that simultaneously blends conceptual treatments with practical, hands-on examples that walk the reader through how to conduct text analysis projects with real data. The book shows how to conduct text analysis in the R statistical computing environment--a popular programming language in data science. | |
520 | 3 | |a Cover -- Advance Praise for Mapping Texts -- Mapping Texts: Computational Text Analysis for the Social Sciences -- Copyright -- Dediaction -- Contents -- Preface -- What You Will Learn -- What We Left Out -- Acknowledgments -- Part I: Bounding Texts -- 1: Text in Context -- What Is Language? -- What Is Text? -- 2: Corpus Building -- Texts Are Not People -- Balance, Range, and Representativeness -- Text Metadata -- Authors and Audiences -- Time and Location -- Domains and Media -- Text Data -- Languages and Dialects -- Genres and Topics -- Registers and Styles -- Redrawing Boundaries -- Part II: Prerequisites -- 3: Computing Basics -- Brass Tacks -- Coding Environments -- Data Objects, Types, and Structures -- Dialects of R -- Control Processes: Functions, Loops, and Apply -- Installing and Loading Packages -- Using Python in R -- Data Visualization -- Where to from Here -- 4: Math Basics -- The Fundamentals -- Comparing Vectors -- Dot Product -- Euclidean Distance and Cosine Similarity -- Correlation -- Regression -- Comparing Distributions -- Central Tendency -- Dispersion -- Types of Distributions -- Our Dear Friend, the Matrix -- Matrix Projection -- Vector Spaces and Singular Value Decomposition -- Graphs and Matrix Projection -- A Little Math Goes a Long Way -- Part III: Foundations -- 5: Acquiring Text -- Public Text Datasets -- Optical Character Recognition -- Automated Audio Transcription -- Application Programming Interfaces (APIs) -- Automated Web Scraping -- Legal and Ethical Side of Scraping -- Terms of Service -- Intellectual Property -- Individual and Organizational Privacy -- 6: From Text to Numbers -- Units of Analysis -- Tokenizing -- Chunking -- Document Features -- Sparsity -- Dedicated DTM Functions -- Token Distributions -- Zipf's Law and Herdan-heaps' Law -- Weighting and Norming -- Relative Term Frequency. | |
700 | 1 | |a Taylor, Marshall A. |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-0-19-775691-1 |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034967401 |
Datensatz im Suchindex
_version_ | 1823230091343167488 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Stoltz, Dustin S. Taylor, Marshall A. |
author_facet | Stoltz, Dustin S. Taylor, Marshall A. |
author_role | aut aut |
author_sort | Stoltz, Dustin S. |
author_variant | d s s ds dss m a t ma mat |
building | Verbundindex |
bvnumber | BV049623405 |
classification_rvk | ST 650 |
ctrlnum | (DE-599)BVBBV049623405 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000001c 4500</leader><controlfield tag="001">BV049623405</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20250205</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">240321s2024 xx |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780197756881</subfield><subfield code="9">978-0-19-775688-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049623405</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-1102</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 650</subfield><subfield code="0">(DE-625)143687:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stoltz, Dustin S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mapping texts</subfield><subfield code="b">computational text analysis for the social sciences</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford</subfield><subfield code="b">Oxford University Press</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 307 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Computational social science series</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Mapping Texts is the first introduction to computational text analysis that simultaneously blends conceptual treatments with practical, hands-on examples that walk the reader through how to conduct text analysis projects with real data. The book shows how to conduct text analysis in the R statistical computing environment--a popular programming language in data science.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Cover -- Advance Praise for Mapping Texts -- Mapping Texts: Computational Text Analysis for the Social Sciences -- Copyright -- Dediaction -- Contents -- Preface -- What You Will Learn -- What We Left Out -- Acknowledgments -- Part I: Bounding Texts -- 1: Text in Context -- What Is Language? -- What Is Text? -- 2: Corpus Building -- Texts Are Not People -- Balance, Range, and Representativeness -- Text Metadata -- Authors and Audiences -- Time and Location -- Domains and Media -- Text Data -- Languages and Dialects -- Genres and Topics -- Registers and Styles -- Redrawing Boundaries -- Part II: Prerequisites -- 3: Computing Basics -- Brass Tacks -- Coding Environments -- Data Objects, Types, and Structures -- Dialects of R -- Control Processes: Functions, Loops, and Apply -- Installing and Loading Packages -- Using Python in R -- Data Visualization -- Where to from Here -- 4: Math Basics -- The Fundamentals -- Comparing Vectors -- Dot Product -- Euclidean Distance and Cosine Similarity -- Correlation -- Regression -- Comparing Distributions -- Central Tendency -- Dispersion -- Types of Distributions -- Our Dear Friend, the Matrix -- Matrix Projection -- Vector Spaces and Singular Value Decomposition -- Graphs and Matrix Projection -- A Little Math Goes a Long Way -- Part III: Foundations -- 5: Acquiring Text -- Public Text Datasets -- Optical Character Recognition -- Automated Audio Transcription -- Application Programming Interfaces (APIs) -- Automated Web Scraping -- Legal and Ethical Side of Scraping -- Terms of Service -- Intellectual Property -- Individual and Organizational Privacy -- 6: From Text to Numbers -- Units of Analysis -- Tokenizing -- Chunking -- Document Features -- Sparsity -- Dedicated DTM Functions -- Token Distributions -- Zipf's Law and Herdan-heaps' Law -- Weighting and Norming -- Relative Term Frequency.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Taylor, Marshall A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-0-19-775691-1</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034967401</subfield></datafield></record></collection> |
id | DE-604.BV049623405 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:37:27Z |
indexdate | 2025-02-05T15:01:50Z |
institution | BVB |
isbn | 9780197756881 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034967401 |
open_access_boolean | |
owner | DE-703 DE-1102 |
owner_facet | DE-703 DE-1102 |
physical | XV, 307 Seiten |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Oxford University Press |
record_format | marc |
series2 | Computational social science series |
spelling | Stoltz, Dustin S. Verfasser aut Mapping texts computational text analysis for the social sciences Oxford Oxford University Press 2024 XV, 307 Seiten txt rdacontent n rdamedia nc rdacarrier Computational social science series Mapping Texts is the first introduction to computational text analysis that simultaneously blends conceptual treatments with practical, hands-on examples that walk the reader through how to conduct text analysis projects with real data. The book shows how to conduct text analysis in the R statistical computing environment--a popular programming language in data science. Cover -- Advance Praise for Mapping Texts -- Mapping Texts: Computational Text Analysis for the Social Sciences -- Copyright -- Dediaction -- Contents -- Preface -- What You Will Learn -- What We Left Out -- Acknowledgments -- Part I: Bounding Texts -- 1: Text in Context -- What Is Language? -- What Is Text? -- 2: Corpus Building -- Texts Are Not People -- Balance, Range, and Representativeness -- Text Metadata -- Authors and Audiences -- Time and Location -- Domains and Media -- Text Data -- Languages and Dialects -- Genres and Topics -- Registers and Styles -- Redrawing Boundaries -- Part II: Prerequisites -- 3: Computing Basics -- Brass Tacks -- Coding Environments -- Data Objects, Types, and Structures -- Dialects of R -- Control Processes: Functions, Loops, and Apply -- Installing and Loading Packages -- Using Python in R -- Data Visualization -- Where to from Here -- 4: Math Basics -- The Fundamentals -- Comparing Vectors -- Dot Product -- Euclidean Distance and Cosine Similarity -- Correlation -- Regression -- Comparing Distributions -- Central Tendency -- Dispersion -- Types of Distributions -- Our Dear Friend, the Matrix -- Matrix Projection -- Vector Spaces and Singular Value Decomposition -- Graphs and Matrix Projection -- A Little Math Goes a Long Way -- Part III: Foundations -- 5: Acquiring Text -- Public Text Datasets -- Optical Character Recognition -- Automated Audio Transcription -- Application Programming Interfaces (APIs) -- Automated Web Scraping -- Legal and Ethical Side of Scraping -- Terms of Service -- Intellectual Property -- Individual and Organizational Privacy -- 6: From Text to Numbers -- Units of Analysis -- Tokenizing -- Chunking -- Document Features -- Sparsity -- Dedicated DTM Functions -- Token Distributions -- Zipf's Law and Herdan-heaps' Law -- Weighting and Norming -- Relative Term Frequency. Taylor, Marshall A. Verfasser aut Erscheint auch als Online-Ausgabe 978-0-19-775691-1 |
spellingShingle | Stoltz, Dustin S. Taylor, Marshall A. Mapping texts computational text analysis for the social sciences |
title | Mapping texts computational text analysis for the social sciences |
title_auth | Mapping texts computational text analysis for the social sciences |
title_exact_search | Mapping texts computational text analysis for the social sciences |
title_exact_search_txtP | Mapping texts computational text analysis for the social sciences |
title_full | Mapping texts computational text analysis for the social sciences |
title_fullStr | Mapping texts computational text analysis for the social sciences |
title_full_unstemmed | Mapping texts computational text analysis for the social sciences |
title_short | Mapping texts |
title_sort | mapping texts computational text analysis for the social sciences |
title_sub | computational text analysis for the social sciences |
work_keys_str_mv | AT stoltzdustins mappingtextscomputationaltextanalysisforthesocialsciences AT taylormarshalla mappingtextscomputationaltextanalysisforthesocialsciences |