Sustainable hybrid energy systems: carbon neutral approaches, modeling, and case studies
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
[2024]
|
Schlagworte: | |
Online-Zugang: | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-35243-2/ Inhaltsverzeichnis |
Beschreibung: | xxix, 400 Seiten Illustrationen, Diagramme 24.4 cm x 17 cm |
ISBN: | 9783527352432 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV049611004 | ||
003 | DE-604 | ||
005 | 20240416 | ||
007 | t | ||
008 | 240313s2024 gw a||| |||| 00||| eng d | ||
015 | |a 23,N40 |2 dnb | ||
016 | 7 | |a 1304403998 |2 DE-101 | |
020 | |a 9783527352432 |c : EUR 159.00 (DE) (freier Preis), EUR 163.50 (AT) (freier Preis) |9 978-3-527-35243-2 | ||
024 | 3 | |a 9783527352432 | |
028 | 5 | 2 | |a Bestellnummer: 1135243 000 |
035 | |a (OCoLC)1430764424 | ||
035 | |a (DE-599)DNB1304403998 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-29T |a DE-703 | ||
084 | |8 1\p |a 620 |2 23sdnb | ||
100 | 1 | |a Xu, Jiuping |d 1962- |e Verfasser |0 (DE-588)137202369 |4 aut | |
245 | 1 | 0 | |a Sustainable hybrid energy systems |b carbon neutral approaches, modeling, and case studies |c Jiuping Xu and Fengjuan Wang |
264 | 1 | |a Weinheim |b Wiley-VCH |c [2024] | |
300 | |a xxix, 400 Seiten |b Illustrationen, Diagramme |c 24.4 cm x 17 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Energieversorgung |0 (DE-588)4014736-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sektorkopplung |0 (DE-588)1215284845 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Erneuerbare Energien |0 (DE-588)4068598-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modellierung |0 (DE-588)4170297-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a CO2-Bilanz |0 (DE-588)1176540750 |2 gnd |9 rswk-swf |
653 | |a EG30: Erneuerbare Energien | ||
653 | |a EN40: Umweltmanagement, Politik u. -Planung | ||
653 | |a Energie | ||
653 | |a Energiesysteme | ||
653 | |a Energy | ||
653 | |a Environmental Management, Policy & Planning | ||
653 | |a Environmental Studies | ||
653 | |a Erneuerbare Energien | ||
653 | |a Hybrid | ||
653 | |a MA81: Mathematische Modellierung | ||
653 | |a Mathematical Modeling | ||
653 | |a Mathematics | ||
653 | |a Mathematik | ||
653 | |a Mathematische Modellierung | ||
653 | |a Nachhaltige Energietechnik | ||
653 | |a Renewable Energy | ||
653 | |a Umweltforschung | ||
653 | |a Umweltmanagement | ||
653 | |a Umweltmanagement, Politik u. -Planung | ||
689 | 0 | 0 | |a Energieversorgung |0 (DE-588)4014736-8 |D s |
689 | 0 | 1 | |a Erneuerbare Energien |0 (DE-588)4068598-6 |D s |
689 | 0 | 2 | |a Sektorkopplung |0 (DE-588)1215284845 |D s |
689 | 0 | 3 | |a CO2-Bilanz |0 (DE-588)1176540750 |D s |
689 | 0 | 4 | |a Modellierung |0 (DE-588)4170297-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Wang, Fengjuan |e Verfasser |0 (DE-588)1324566914 |4 aut | |
710 | 2 | |a Wiley-VCH |0 (DE-588)16179388-5 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-527-84325-1 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-527-84326-8 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, oBook |z 978-3-527-84327-5 |
856 | 4 | 2 | |m X:MVB |u http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-35243-2/ |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034955219&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a vlb |d 20230929 |q DE-101 |u https://d-nb.info/provenance/plan#vlb |
Datensatz im Suchindex
_version_ | 1805073280986513408 |
---|---|
adam_text |
CONTENTS
LIST
OF
FIGURES
XVII
LIST
OF
TABLES
XXIII
PREFACE
XXVII
1
1.1
1.1.1
1.1.2
1.1.3
1.2
1.2.1
1.2.2
1.2.3
1.3
INTRODUCTION
1
BACKGROUND
1
GLOBAL
MISSION
OF
ACHIEVING
CARBON
NEUTRALITY
1
GLOBAL
PASSION
FOR
PROMOTING
ENERGY
TRANSITION
3
GLOBAL
STATUS
OF
DEVELOPING
HYBRID
ENERGY
SYSTEMS
5
HYBRID
ENERGY
SYSTEMS
8
DEFINITION
8
CLASSIFICATION
9
ADVANTAGES
12
CHAPTER
ORGANIZATION
13
REFERENCES
16
2
INDUSTRIAL
DECARBONIZATION-ORIENTED
DEPLOYMENT
OF
HYBRID
WIND-SOLAR-STORAGE
SYSTEM
21
2.1
2.2
2.2.1
2.2.2
2.2.3
2.3
2.3.1
2.3.2
2.3.2.1
2.3.2.2
2.3.2.3
2.3.2.4
2.3.2.5
2.3.2.6
2.3.2.7
BACKGROUND
REVIEW
22
MAIN
ISSUE
DESCRIPTION
24
SYSTEM
SCHEMATIC
24
DECARBONIZATION
DATASETS
24
OPTIMIZATION
SCHEME
26
MATHEMATICAL
MODELING
27
NOTATIONS
27
DECARBONIZED
DEPLOYMENT
29
TO
REDUCE
THE
TOTAL
ELECTRICITY
UTILIZATION
COSTS
29
TO
PROMOTE
THE
INSTALLED
CAPACITY
OF
WIND
AND
SOLAR
POWER
29
TO
ACCELERATE
DECARBONIZATION
AND
CONTROL
POLLUTION
EMISSIONS
30
WIND
POWER
OUTPUT
30
SOLAR
POWER
OUTPUT
31
OPERATION
OF
BATTERY
STORAGE
SYSTEM
31
COMPENSATION
OF
WIND,
SOLAR,
AND
STORAGE
RESOURCES
32
VI
CONTENTS
23.2.8
23.2.9
2.33
2.3.4
2.4
2.4.1
2.4.2
2.4.3
2.4.3.1
2.43.2
2.43.3
2.5
2.5.1
2.5.2
ELECTRICITY
SUPPLY
AND
DEMAND
BALANCE
32
AVAILABLE
AREA
FOR
NEW
ENERGY
INSTALLATION
33
GLOBAL
MODEL
33
MODEL
SOLVING
35
CASE
STUDY
35
CASE
DESCRIPTION
37
DATA
COLLECTION
37
CALCULATION
RESULTS
AND
ANALYSIS
39
OPTIMAL
CONFIGURATIONS
RESULTS
39
ECONOMIC
PERFORMANCE
AND
SELF-SUFFICIENCY
RATIO
42
REGIONAL
DECARBONIZATION
POTENTIAL
43
COMPREHENSIVE
DISCUSSIONS
43
SCENARIO
SIMULATION
43
MANAGEMENT
RECOMMENDATIONS
44
REFERENCES
45
3
SUSTAINABLE
OPERATION-ORIENTED
DEPLOYMENT
OF
HYBRID
WIND-SOLAR-STORAGE
SYSTEM
51
3.1
3.2
3.2.1
3.2.2
3.2.3
3.3
3.3.1
3.3.2
3.3.2.1
BACKGROUND
REVIEW
52
MAIN
ISSUE
DESCRIPTION
54
SYSTEM
SCHEMATIC
54
OPERATION
STRATEGY
55
OPTIMIZATION
SCHEME
56
MATHEMATICAL
MODELING
57
NOTATIONS
57
SUSTAINABLE
DEPLOYMENT
58
ECONOMIC
SUSTAINABILITY:
MINIMIZE
THE
LEVELIZED
COST
OF
ELECTRICITY
58
33.2.2
3.3.23
33.2.4
33.2.5
33.2.6
33.2.7
33.2.8
33.2.9
3.3.3
3.3.4
3.4
3.4.1
3.4.2
3.4.3
3.4.3.1
3.4.4
TECHNICAL
SUSTAINABILITY:
MAXIMIZE
SELF-SUFFICIENCY
RATIO
60
ENVIRONMENTAL
SUSTAINABILITY:
MINIMIZE
CARBON
EMISSIONS
60
SOCIAL
SUSTAINABILITY:
MAXIMIZE
JOB
CREATION
60
OUTPUT
OF
SOLAR
POWER
61
OUTPUT
OF
WIND
POWER
61
BALANCE
OF
BATTERY
STORAGE
SYSTEM
62
BALANCE
OF
DEMAND
AND
SUPPLY
62
KEY
OPERATION
CONSTRAINTS
62
GLOBAL
MODEL
63
MODEL
SOLVING
64
CASE
STUDY
65
CASE
DESCRIPTION
65
DATA
COLLECTION
66
CALCULATION
RESULTS
AND
ANALYSIS
67
RESULTS
UNDER
DIFFERENT
SCENARIOS
67
RESULTS
OF
ENERGY
BALANCE
69
CONTENTS
VII
3.4.4.1
INFLUENCE
OF
ELECTRICITY
PRICE
69
3.4.4.2
INFLUENCE
OF
NATURAL
RESOURCES
70
3.5
COMPREHENSIVE
DISCUSSION
71
3.5.1
RELATED
PROPOSITIONS
71
3.5.2
MANAGEMENT
RECOMMENDATIONS
72
REFERENCES
73
4
DISASTER
RESILIENCE-ORIENTED
DEPLOYMENT
OF
HYBRID
WIND-SOLAR-STORAGE-GAS
SYSTEM
79
4.1
4.2
4.2.1
4.2.2
4.2.3
4.3
4.3.1
4.3.2
4.3.2.1
BACKGROUND
REVIEW
80
MAIN
ISSUE
DESCRIPTION
81
SYSTEM
SCHEMATIC
81
RESILIENCE
CHARACTERIZATION
82
OPTIMIZATION
SCHEME
83
MATHEMATICAL
MODELING
85
NOTATIONS
85
RESILIENT
DEPLOYMENT
87
THE
UPPER-LEVEL
DECISION
MAKER:
TO
MAXIMIZE
THE
USE
OF
CLEAN
ENERGY
87
4.3.2.2
4.3.2.3
4.3.2.4
4.3.2.5
4.3.2.6
4.3.2.7
4.3.2.8
4.3.2.9
4.3.2.10
4.3.2.11
4.3.3
4.3.4
4.4
4.4.1
4.4.2
4.4.3
4.4.3.1
4.4.3.2
4.4.3.3
4.4.3.4
4.4.3.5
4.5
4.5.1
4.5.2
TO
MINIMIZE
THE
TOTAL
ANNUAL
POWER
COSTS
87
TO
MINIMIZE
CARBON
EMISSIONS
88
TO
MAXIMIZE
POWER
SYSTEM
RESILIENCE
88
CLEAN
ENERGY
USE
RESTRICTIONS
89
INSTALLATION
AREA
RESTRICTION
89
PV
PANEL
OPERATION
89
ENERGY
STORAGE
SYSTEM
OPERATION
90
BATTERY
STATE
RESTRICTIONS
90
GAS
TURBINE
OPERATION
90
POWER
SUPPLY
AND
DEMAND
BALANCE
91
GLOBAL
MODEL
91
MODEL
SOLVING
92
CASE
STUDY
93
CASE
DESCRIPTION
94
DATA
COLLECTION
94
CALCULATION
RESULTS
AND
ANALYSIS
95
MAXIMUM
RESILIENCE
EMISSION
RESULTS
97
COMPARISON
OF
DIFFERENT
SCENARIOS
98
OPERATION
UNDER
NORMAL
MODES
98
OPERATION
UNDER
EXTREME
DISASTERS
101
INFLUENCE
OF
CHANGING
MARKET
PRICES
104
COMPREHENSIVE
DISCUSSION
105
RELATED
PROPOSITIONS
105
MANAGEMENT
RECOMMENDATIONS
106
REFERENCES
107
VIII
CONTENTS
5
BI-LEVEL
EMISSION
QUOTA
ALLOCATION
TOWARD
COAL
AND
BIOMASS
CO-COMBUSTION
113
5.1
5.2
5.2.1
5.2.2
5.2.3
5.3
5.3.1
5.3.2
5.3.2.1
5.3.2.2
5.3.2.3
5.3.2.4
5.3.2.5
BACKGROUND
REVIEW
113
MAIN
ISSUES
'
DESCRIPTION
115
SYSTEM
SCHEMATIC
116
UNCERTAIN
DECISION-MAKING
ENVIRONMENT
116
BI-LEVEL
DECISION-MAKING
STRUCTURE
116
MODELING
118
NOTATIONS
118
PERSPECTIVE
FROM
THE
LOCAL
AUTHORITY
119
TO
MAXIMIZE
THE
REVENUE
119
TO
MINIMIZE
THE
TOTAL
CARBON
EMISSIONS
119
LIMITATIONS
ON
EACH
CPP
'
S
CARBON
EMISSIONS
119
GUARANTEE
OF
POWER
SUPPLY
120
GAP
BETWEEN
THE
ASSIGNED
EMISSION
QUOTA
AND
THE
ACTUAL
EMISSIONS
120
5.3.3
5.3.3.1
5.3.3.2
5.3.3.3
5.3.3.4
5.3.3.5
5.3.3.6
5.3.3.7
5.3.3.8
5.3.3.9
5.3.3.10
5.3.4
5.3.5
5.4
5.4.1
5.4.2
5.4.3
5.5
5.5.1
5.5.2
PERSPECTIVE
FROM
THE
CPPS
120
TO
MAXIMIZE
PROFITS
OF
ELECTRICITY
GENERATION
120
COMBUSTION
EFFICIENCY
121
FUEL
QUANTITY
REQUIREMENTS
121
FUEL
QUALITIES
'
REQUIREMENTS
121
BLENDING
RATIO
LIMITATION
OF
BIOMASS
122
RESPONSIBILITY
TO
ENSURE
POWER
SUPPLY
122
EMISSIONS
QUOTA
CONSTRAINTS
122
DYNAMIC
FUEL
STORAGE
123
LOGISTIC
CONSTRAINT
ON
FUEL
STORAGE
123
LIMITATION
OF
WAREHOUSING
ABILITY
123
GLOBAL
MODEL
123
MODEL
SOLVING
125
CASE
STUDY
125
CASE
DESCRIPTION
125
DATA
COLLECTION
128
RESULTS
UNDER
DIFFERENT
SCENARIOS
128
DISCUSSION
132
PROPOSITIONS
AND
ANALYSES
132
POLICY
IMPLICATIONS
137
REFERENCES
139
6
BI-LEVEL
EMISSION
QUOTA
ALLOCATION
TOWARD
COAL
AND
MUNICIPAL
SOLID
WASTE
CO-COMBUSTION
143
6.1
6.2
6.2.1
6.2.2
6.2.3
BACKGROUND
REVIEW
144
MAIN
ISSUE
DESCRIPTION
145
SYSTEM
SCHEMATIC
145
UNCERTAIN
DECISION-MAKING
146
BI-LEVEL
RELATIONSHIP
147
CONTENTS
IX
6.3
6.3.1
6.3.2
6.3.2.1
6.3.2.2
6.3.2.3
6.3.2.4
6.3.3
6.3.3.1
6.3.3.2
6.3.3.3
6.3.3.4
6.3.4
6.3.5
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.4.1
6.4.4.2
6.4.4.3
6.4.4.4
6.4.4.5
6.4.4.6
6.4.5
6.4.5.1
6.4.5.2
6.4.5.3
6.4.5.4
6.5
6.5.1
6.5.2
MODELING
148
NOTATIONS
149
MODELING
DESCRIPTION
FOR
REGIONAL
AUTHORITY
150
TO
MAXIMIZE
REVENUE
150
EMISSION
QUOTA
LIMITATION
150
TOTAL
EMISSIONS
LIMITATION
151
POWER
SUPPLY
AND
DEMAND
RISK
151
MODELING
DESCRIPTION
FOR
EACH
IPP
151
TO
MAXIMIZE
PROFITS
151
AVAILABLE
CAPACITY
LIMITATIONS
OF
POWER
PLANTS
152
QUALITY
REQUIREMENTS
OF
FUELS
152
COMBUSTION
TECHNICAL
REQUIREMENTS
153
GLOBAL
MODEL
153
SOLUTION
APPROACH
154
CASE
STUDY
157
CASE
PRESENTATION
157
DATA
COLLECTION
157
CALCULATION
RESULTS
161
RESULTS
OF
DIFFERENT
SCENARIOS
161
SO:
BASELINE
SCENARIO,
A
=
L
161
S1:
INITIAL
CURB
SCENARIO,
A
=
0.9
163
S2:
MODERATE
CURB
SCENARIO,
A
=
0.9
163
S3:
SERIOUS
CURB
SCENARIO,
A
=
0.85
163
S4:
VIGOROUS
CURB
SCENARIO,
A
=
0.8
164
S5:
MAXIMAL
LIMITATION
SCENARIO,
A
=
0.75
164
SCENARIO
RESULTS
COMPARISON
164
COMPARISON
OF
TOTAL
CARBON
EMISSIONS
AT
EACH
POWER
PLANT
164
CARBON
EMISSIONS
FROM
DIFFERENT
FUELS
AT
EACH
POWER
PLANT
165
COMPARISON
OF
REVENUE,
COSTS,
AND
PROFITS
AT
EACH
POWER
PLANT
167
INFLUENCE
OF
SUBSIDY
VARIATION
ON
PROFITS
TREND
167
COMPREHENSIVE
DISCUSSION
169
POLICY
IMPLICATIONS
169
INDUSTRIAL
MANAGEMENT
RECOMMENDATIONS
171
REFERENCES
171
7
BI-LEVEL
MULTI-OBJECTIVE
EMISSION
QUOTA
ALLOCATION
TOWARD
COAL
AND
SEWAGE
CO-COMBUSTION
175
7.1
7.2
7.2.1
7.2.2
7.2.3
7.3
7.3.1
7.3.2
BACKGROUND
REVIEW
176
MAIN
ISSUE
DESCRIPTION
177
SYSTEM
SCHEMATIC
177
UNCERTAIN
DECISION
ENVIRONMENT
177
OPTIMIZATION
SCHEME
178
MODELING
180
NOTATIONS
180
ALLOCATION
SCHEME
FOR
THE
AUTHORITY
181
CONTENTS
7.3.2.1
7.3.2.2
7.3.2.3
7.3.2.4
7.3.2.5
7.3.2.6
7.3.2.7
7.3.3
7.3.3.1
7.3.3.2
7.3.3.3
7.3.3.4
7.3.4
7.3.5
7.4
7.4.1
7.4.2
7.4.3
7.4.3.1
7.4.4
7.4.4.1
MAXIMIZING
ECONOMIC
BENEFITS
181
MINIMIZING
CARBON
EMISSION
INTENSITY
181
MAXIMIZING
SLUDGE
UTILIZATION
182
BENCHMARK
ALLOCATION
METHOD
182
THE
CONTROL
OF
CARBON
EMISSION
182
POWER
SUPPLY
AND
DEMAND
BALANCE
183
BOUNDS
OF
QUOTAS
183
STRATEGY
FOR
COAL-FIRED
PLANTS
183
MAXIMIZING
PROFITS
183
QUALITY
REQUIREMENTS
ON
FUEL
184
RESTRICTIONS
ON
POLLUTANT
EMISSION
184
AVAILABLE
QUANTITIES
OF
FUEL
185
GLOBAL
MODEL
185
MODEL
SOLVING
185
CASE
STUDY
187
CASE
DESCRIPTION
187
DATA
COLLECTION
187
CALCULATION
RESULTS
191
ANALYSIS
UNDER
DIFFERENT
OBJECTIVE
WEIGHTS
191
SCENARIO
ANALYSIS
192
SCENARIO
1:
RESULTS
UNDER
DIFFERENT
LEVELS
OF
CARBON
EMISSION
REDUCTIONS
194
7.4.4.2
SCENARIO
2:
RESULTS
UNDER
DIFFERENT
CARBON
EMISSION
INTENSITY
REDUCTION
TARGETS
195
7.5
7.5.1
7.5.2
COMPREHENSIVE
DISCUSSION
196
MODEL
COMPARISON
197
POLICY
IMPLICATIONS
198
REFERENCES
199
8
RELIABLE-ECONOMICAL
SCHEDULING
OF
HYBRID
SOLAR-HYDRO
SYSTEM
203
8.1
8.2
8.2.1
8.2.2
8.2.3
8.3
8.3.1
8.3.2
8.3.2.1
8.3.2.2
8.3.3
8.3.3.1
8.3.3.2
8.3.3.3
BACKGROUND
REVIEW
204
KEY
PROBLEM
STATEMENT
206
SYSTEM
DESCRIPTION
206
TRADE-OFF
BETWEEN
RELIABLE
AND
ECONOMICAL
POWER
SUPPLY
207
HANDLING
RENEWABLE
ENERGY
UNCERTAINTIES
208
MODELING
209
NOTATIONS
209
HYBRID
SYSTEM
'
S
RELIABILITY
AND
ECONOMY
EQUILIBRIUM
210
MAXIMIZE
POWER
SUPPLY
RELIABILITY
210
MAXIMIZE
ELECTRICITY
SALES
REVENUE
211
CONSTRAINTS
OF
THE
HYBRID
SYSTEM
211
PHOTOVOLTAIC
POWER
PLANT
'
S
OUTPUT
211
ACCESSIBLE
PHOTOVOLTAIC
ARRAYS
212
SOLAR
POWER
OUTPUT
LIMITATION
212
CONTENTS
8.3.3.4
8.3.3.5
8.3.3.6
8.3.3.7
8.3.3.8
8.3.4
8.3.5
8.4
8.4.1
8.4.2
8.4.3
8.4.3.1
8.4.3.2
8.4.3.3
8.4.3.4
8.5
8.5.1
8.5.2
8.5.3
HYDRO
TURBINE
OUTPUT
213
LIMITATION
ON
AVAILABLE
WATER
213
DYNAMIC
WATER
INVENTORY
213
LIMIT
ON
THE
ABILITY
OF
POWER
TRANSMISSION
214
LIMIT
ON
THE
STABILITY
OF
POWER
TRANSMISSION
214
GLOBAL
MODEL
214
MODEL
SOLVING
216
CASE
STUDY
217
CASE
DESCRIPTION
217
DATA
COLLECTION
219
CALCULATION
RESULTS
220
TECHNICAL
OUTPUT
ANALYSIS
223
POWER
OUTPUT
RATIO
ANALYSIS
224
HOURLY
POWER
OUTPUT
ANALYSIS
225
ECONOMIC
BENEFITS
ANALYSIS
225
DISCUSSION
228
COMPARATIVE
STUDY
228
RELATED
PROPOSITIONS
229
MANAGEMENT
RECOMMENDATIONS
231
REFERENCES
232
9
RELIABLE-ECONOMICAL
EQUILIBRIUM-BASED
SHORT-TERM
SCHEDULING
OF
HYBRID
SOLAR-WIND-GAS
SYSTEM
237
9.1
9.2
9.2.1
9.2.2
9.2.3
9.3
9.3.1
9.3.2
9.3.2.1
9.3.2.2
9.3.3
9.3.3.1
9.3.3.2
9.3.3.3
9.3.3.4
9.3.3.5
9.3.3.6
9.3.3.7
9.3.4
9.3.5
9.3.5.1
BACKGROUND
REVIEW
238
KEY
PROBLEM
STATEMENT
239
SYSTEM
DESCRIPTION
240
RESOLVING
RENEWABLE
ENERGY
UNCERTAINTIES
240
ACHIEVING
RELIABLE-ECONOMICAL
EQUILIBRIUM
242
MODELING
243
NOTATIONS
243
TO
GUARANTEE
ECONOMIC
BENEFITS
AND
RELIABILITY
244
TO
MAXIMIZE
TOTAL
INCOME
244
TO
MINIMIZE
THE
DEVIATION
OF
POWER
SUPPLY
AND
DEMAND
245
CONSTRAINTS
OF
SYSTEM
COMPONENTS
245
OUTPUT
OF
SOLAR
POWER
PLANTS
245
SOLAR
POWER
OUTPUT
LIMITATION
246
POWER
OUTPUT
OF
WIND
FARM
246
WIND
POWER
OUTPUT
LIMITATION
246
OUTPUT
OF
NATURAL
GAS
POWER
PLANTS
247
OPERATION
LIMITATIONS
OF
NATURAL
GAS
TURBINES
247
SYSTEM
SPINNING
RESERVE
247
GLOBAL
MODEL
247
MATHEMATICAL
SOLVING
249
TRANSFORMING
THE
MULTI-OBJECTIVE
MODEL
USING
E-CONSTRAINT
METHOD
249
XII
CONTENTS
9.3.5.2
9.4
9.4.1
9.4.2
9.5
9.5.1
9.5.2
9.5.3
9.6
9.6.1
9.6.2
9.6.3
SELECT
THE
OPTIMAL
SOLUTION
USING
FUZZY
SATISFYING
METHOD
249
CASE
STUDY
250
CASE
DESCRIPTION
250
DATA
COLLECTION
251
CALCULATION
RESULTS
AND
ANALYSIS
255
OPTIMAL
SOLUTIONS
255
ECONOMIC
BENEFITS
ANALYSIS
255
SYSTEM
RELIABILITY
ANALYSIS
257
COMPREHENSIVE
DISCUSSION
260
RELATED
PROPOSITIONS
260
COMPARATIVE
STUDY
262
MANAGEMENT
RECOMMENDATIONS
263
REFERENCES
264
10
RELIABLE-ECONOMICAL-SOCIAL
EQUILIBRIUM-BASED
SCHEDULING
OF
HYBRID
SOLAR-WIND-HYDRO
SYSTEM
269
10.1
10.2
10.2.1
10.2.2
10.2.3
10.3
10.3.1
10.3.2
10.3.2.1
10.3.2.2
10.3.2.3
10.3.2.4
10.3.3
10.3.3.1
10.3.3.2
10.3.3.3
10.3.3.4
10.3.3.5
10.3.4
10.3.5
10.4
10.4.1
10.4.2
10.5
10.5.1
10.5.2
BACKGROUND
REVIEW
269
KEY
PROBLEM
STATEMENT
271
SYSTEM
DESCRIPTION
271
MULTI-OBJECTIVE
DECISION-MAKING
PROBLEM
272
SEASONAL
AND
DAILY
UNCERTAINTIES
273
MODELING
274
NOTATIONS
274
FOUR
MAIN
GOALS
CONSIDERED
FOR
THE
HYBRID
SYSTEM
275
MAXIMIZING
COMPLEMENTARY
RATE
275
MAXIMIZING
POWER
SUPPLY
RELIABILITY
276
MINIMIZING
NEW
ENERGY
CURTAILMENTS
277
MAXIMIZING
YEARLY
POWER
SUPPLY
PROFITS
277
CONSTRAINTS
OF
THE
HYBRID
SYSTEM
277
NEW
ENERGY
OUTPUT
LIMITATION
277
HYDROPOWER
OUTPUT
LIMITATION
278
WATER
FLOW
LIMITATION
278
WATER
VOLUME
LIMITATION
278
TRANSMISSION
CAPACITY
LIMITATION
279
GLOBAL
MODEL
279
MODEL
SOLVING
280
CASE
STUDY
281
CASE
DESCRIPTION
281
DATA
COLLECTION
283
RESULTS
284
COMPLEMENTARY
RATES
OF
NEW
ENERGIES
286
RESULTS
UNDER
DIFFERENT
RELIABILITY
AND
COMPLEMENTARITY
RATES
288
10.5.3
RESULTS
UNDER
DIFFERENT
NEW
ENERGY
CURTAILMENT
RATES
290
CONTENTS
XIII
10.5.4
10.6
10.6.1
10.6.2
COMPARISON
OF
DIFFERENT
SYSTEMS
293
DISCUSSION
293
CORE
FINDINGS
295
MANAGEMENT
RECOMMENDATIONS
296
REFERENCES
297
11
OPTIMAL
RPS
IMPLEMENTATION
STRATEGY
CONSIDERING
BOTH
POWER
SUPPLIERS
AND
USERS
301
11.1
11.2
11.2.1
11.2.2
11.2.3
11.3
11.3.1
11.3.2
11.3.3
11.3.3.1
11.3.3.2
11.3.3.3
11.3.4
11.3.4.1
11.3.4.2
11.3.4.3
11.3.4.4
11.3.5
11.3.6
11.4
11.4.1
11.4.2
11.4.3
11.4.3.1
11.4.3.2
11.4.3.3
11.5
11.5.1
11.5.1.1
11.5.1.2
11.5.2
11.5.2.1
11.5.2.2
11.5.2.3
11.5.3
BACKGROUND
REVIEW
301
KEY
PROBLEM
STATEMENT
303
DECISION
PROCESS
DESCRIPTION
303
POWER
USER
CLASSIFICATIONS
304
MULTI-OBJECTIVES
OF
DEMAND
AND
SUPPLY
SIDES
304
MODELING
305
ASSUMPTIONS
305
NOTATIONS
305
OBJECTIVES
306
TO
MINIMIZE
THE
ELECTRICITY
TARIFF
VARIATIONS
307
TO
MINIMIZE
TOTAL
COSTS
307
TO
MAXIMIZE
RPS
308
PROVINCIAL
POWER
CONSTRAINTS
308
POWER
GENERATION
AND
CONSUMPTION
BALANCE
308
POWER
SALE
LIMITATIONS
309
POWER
TRANSMISSION
LIMITATIONS
309
RPS
AND
NON-HYDRO
RPS
TARGET
LIMITATIONS
309
GLOBAL
MODEL
310
MODEL
SOLVING
311
CASE
STUDY
314
CASE
DESCRIPTION
314
DATA
COLLECTION
314
CALCULATION
RESULTS
317
DETAILS
OF
POWER
CONSUMPTION
FOR
THREE
GROUPS
OF
USERS
317
DETAILS
OF
GUANGDONG
PROVINCE
'
S
POWER
SCHEDULE
318
THREE
KEY
FINDINGS
FROM
THE
RESULTS
ANALYSIS
318
DISCUSSION
319
COMPARISON
WITH
THE
EXISTING
SCHEDULE
319
COMPARISON
OF
POWER
TARIFF
AND
POLICY
ACCEPTANCE
320
GENERATION
COSTS
AND
CO
2
EMISSIONS
320
SCENARIO
ANALYSIS
322
RE
CONSUMPTION
PROPORTION
RESULTS
323
POWER
TARIFF
RESULTS
324
GENERATION
COST
AND
CO
2
EMISSION
RESULTS
325
KEY
FINDING
326
REFERENCES
327
XIV
CONTENTS
12
OPTIMAL
RPS
IMPLEMENTATION
STRATEGY
CONSIDERING
EQUITY
AND
ECONOMY
EQUILIBRIUM
331
12.1
12.2
12.2.1
12.2.2
12.3
12.3.1
12.3.2
12.3.2.1
12.3.2.2
12.3.3
12.3.3.1
12.3.3.2
12.3.3.3
12.3.3.4
12.3.4
12.3.5
12.4
12.4.1
12.4.2
12.4.3
12.4.3.1
12.4.3.2
INTRODUCTION
331
KEY
PROBLEM
STATEMENT
333
BI-LEVEL
RELATIONSHIP
333
EQUITY
AND
ECONOMY
TRADE-OFF
334
MODELING
335
NOTATIONS
335
CENTRAL
GOVERNMENT
'
S
EQUITY
CONCERN
336
EQUITABLE
ALLOCATION
336
RENEWABLE
ENERGY
CONSUMPTION
RATIO
337
THE
PROVINCIAL
GOVERNMENT
'
S
ECONOMIC
CONCERN
337
THE
BALANCE
OF
RENEWABLE
ELECTRICITY
GENERATION
AND
TRADING
338
THE
BALANCE
OF
POWER
SUPPLY
AND
DEMAND
338
LIMITATION
OF
GENERATION
CAPACITY
338
LIMITATION
OF
TRANSMISSION
CAPACITY
339
GLOBAL
MODEL
339
MODEL-SOLVING
APPROACH
340
CASE
STUDY
341
CASE
DESCRIPTION
341
DATA
COLLECTION
341
CALCULATION
RESULTS
345
GENERATION
AND
TRADING
RESULTS
FOR
INDIVIDUAL
PROVINCES
345
THE
MINIMUM
AND
MAXIMUM
RPS
THAT
CAN
BE
ACHIEVED
FOR
INDIVIDUAL
PROVINCES
347
12.4.3.3
12.5
12.5.1
12.5.1.1
12.5.1.2
12.5.1.3
12.5.1.4
12.5.2
RESULTS
OF
CENTRAL
GOVERNMENT
CONSIDERING
ALLOCATION
EQUITY
348
DISCUSSIONS
348
TRADE-OFFS
BETWEEN
EQUITY
AND
ECONOMY
348
COMPARISON
OF
INTEGRATED
SCORES
351
COMPARISON
OF
MAXIMUM
EQUITY
PARAMETER
351
COMPARISON
OF
THE
COST-CHANGE
RATE
351
COMPARISON
OF
GENERATION
STRATEGY
354
KEY
FINDINGS
354
REFERENCES
355
13
OPTIMAL
RPS
IMPLEMENTATION
STRATEGY
CONSIDERING
EMISSION
TRADE
AND
GREEN
CERTIFICATE
TRADE
359
13.1
13.2
13.2.1
13.2.2
13.3
13.3.1
13.3.2
13.3.3
INTRODUCTION
359
KEY
PROBLEM
STATEMENT
361
INTEGRATION
OF
THE
TGC
AND
CET
POLICIES
361
INTERACTION
OF
POWER
GENERATION
AND
TRADING
363
MODELING
364
ASSUMPTIONS
364
NOTATIONS
365
POWER
GENERATION
AND
TRADING
OBJECTIVES
366
CONTENTS
XV
INDEX
395
13.3.3.1
13.3.3.2
13.3.4
13.3.4.1
13.3.4.2
13.3.4.3
13.3.4.4
13.3.4.5
13.3.4.6
13.3.4.7
13.3.4.8
13.3.4.9
13.3.5
13.3.6
13.3.6.1
13.3.6.2
13.4
13.4.1
13.4.2
13.4.2.1
13.4.2.2
13.4.3
13.4.3.1
13.4.3.2
13.5
13.5.1
13.5.1.1
13.5.1.2
13.5.1.3
13.5.1.4
13.5.2
ECONOMIC
PERFORMANCE
366
ENVIRONMENTAL
PROTECTION
367
GENERATION
AND
TRADING
CONSTRAINTS
367
RENEWABLE
POWER
GENERATION
CAPACITY
LIMITATION
367
TRADITIONAL
POWER
GENERATION
CAPACITY
LIMITATION
367
POWER
DEMAND
AND
SUPPLY
BALANCE
368
POWER
TRANSMISSION
LIMITATION
368
POWER
TRADING
CONSTRAINTS
368
TGC
TRADING
CONSTRAINTS
368
CET
TRADING
CONSTRAINTS
368
RPS-BUNDLED
TGC
CONSUMPTION
369
CET
QUOTA
CONSTRAINTS
369
GLOBAL
MODEL
369
MODEL
SOLVING
370
MODEL
TRANSFORMATION
PROCESS
371
APPLYING
FUZZY
SATISFYING
APPROACH
TO
SELECT
THE
OPTIMAL
SOLUTION
372
CASE
STUDY
372
CASE
DESCRIPTION
372
DATA
COLLECTION
374
TECHNICAL
GENERATION
PARAMETERS
374
POLICY-RELATED
PARAMETERS
375
CALCULATION
RESULTS
AND
ANALYSIS
375
RESULTS
OF
POWER
GENERATION
AND
TRADING
375
RESULTS
OF
ECONOMIC-ENVIRONMENTAL
TRADE-OFFS
378
DISCUSSION
378
SCENARIO
ANALYSES
378
SCENARIO
SETTINGS
379
ECONOMIC
AND
ENVIRONMENTAL
TRADE-OFFS
UNDER
DIFFERENT
SCENARIO
379
POWER
GENERATION
RESULTS
UNDER
DIFFERENT
SCENARIOS
380
POWER
TRADING
RESULTS
UNDER
DIFFERENT SCENARIOS
380
KEY
FINDINGS
381
REFERENCES
382
14
EMERGING
HYBRID
ENERGY
STORAGE
SYSTEMS
387
REFERENCES
394 |
adam_txt |
CONTENTS
LIST
OF
FIGURES
XVII
LIST
OF
TABLES
XXIII
PREFACE
XXVII
1
1.1
1.1.1
1.1.2
1.1.3
1.2
1.2.1
1.2.2
1.2.3
1.3
INTRODUCTION
1
BACKGROUND
1
GLOBAL
MISSION
OF
ACHIEVING
CARBON
NEUTRALITY
1
GLOBAL
PASSION
FOR
PROMOTING
ENERGY
TRANSITION
3
GLOBAL
STATUS
OF
DEVELOPING
HYBRID
ENERGY
SYSTEMS
5
HYBRID
ENERGY
SYSTEMS
8
DEFINITION
8
CLASSIFICATION
9
ADVANTAGES
12
CHAPTER
ORGANIZATION
13
REFERENCES
16
2
INDUSTRIAL
DECARBONIZATION-ORIENTED
DEPLOYMENT
OF
HYBRID
WIND-SOLAR-STORAGE
SYSTEM
21
2.1
2.2
2.2.1
2.2.2
2.2.3
2.3
2.3.1
2.3.2
2.3.2.1
2.3.2.2
2.3.2.3
2.3.2.4
2.3.2.5
2.3.2.6
2.3.2.7
BACKGROUND
REVIEW
22
MAIN
ISSUE
DESCRIPTION
24
SYSTEM
SCHEMATIC
24
DECARBONIZATION
DATASETS
24
OPTIMIZATION
SCHEME
26
MATHEMATICAL
MODELING
27
NOTATIONS
27
DECARBONIZED
DEPLOYMENT
29
TO
REDUCE
THE
TOTAL
ELECTRICITY
UTILIZATION
COSTS
29
TO
PROMOTE
THE
INSTALLED
CAPACITY
OF
WIND
AND
SOLAR
POWER
29
TO
ACCELERATE
DECARBONIZATION
AND
CONTROL
POLLUTION
EMISSIONS
30
WIND
POWER
OUTPUT
30
SOLAR
POWER
OUTPUT
31
OPERATION
OF
BATTERY
STORAGE
SYSTEM
31
COMPENSATION
OF
WIND,
SOLAR,
AND
STORAGE
RESOURCES
32
VI
CONTENTS
23.2.8
23.2.9
2.33
2.3.4
2.4
2.4.1
2.4.2
2.4.3
2.4.3.1
2.43.2
2.43.3
2.5
2.5.1
2.5.2
ELECTRICITY
SUPPLY
AND
DEMAND
BALANCE
32
AVAILABLE
AREA
FOR
NEW
ENERGY
INSTALLATION
33
GLOBAL
MODEL
33
MODEL
SOLVING
35
CASE
STUDY
35
CASE
DESCRIPTION
37
DATA
COLLECTION
37
CALCULATION
RESULTS
AND
ANALYSIS
39
OPTIMAL
CONFIGURATIONS
RESULTS
39
ECONOMIC
PERFORMANCE
AND
SELF-SUFFICIENCY
RATIO
42
REGIONAL
DECARBONIZATION
POTENTIAL
43
COMPREHENSIVE
DISCUSSIONS
43
SCENARIO
SIMULATION
43
MANAGEMENT
RECOMMENDATIONS
44
REFERENCES
45
3
SUSTAINABLE
OPERATION-ORIENTED
DEPLOYMENT
OF
HYBRID
WIND-SOLAR-STORAGE
SYSTEM
51
3.1
3.2
3.2.1
3.2.2
3.2.3
3.3
3.3.1
3.3.2
3.3.2.1
BACKGROUND
REVIEW
52
MAIN
ISSUE
DESCRIPTION
54
SYSTEM
SCHEMATIC
54
OPERATION
STRATEGY
55
OPTIMIZATION
SCHEME
56
MATHEMATICAL
MODELING
57
NOTATIONS
57
SUSTAINABLE
DEPLOYMENT
58
ECONOMIC
SUSTAINABILITY:
MINIMIZE
THE
LEVELIZED
COST
OF
ELECTRICITY
58
33.2.2
3.3.23
33.2.4
33.2.5
33.2.6
33.2.7
33.2.8
33.2.9
3.3.3
3.3.4
3.4
3.4.1
3.4.2
3.4.3
3.4.3.1
3.4.4
TECHNICAL
SUSTAINABILITY:
MAXIMIZE
SELF-SUFFICIENCY
RATIO
60
ENVIRONMENTAL
SUSTAINABILITY:
MINIMIZE
CARBON
EMISSIONS
60
SOCIAL
SUSTAINABILITY:
MAXIMIZE
JOB
CREATION
60
OUTPUT
OF
SOLAR
POWER
61
OUTPUT
OF
WIND
POWER
61
BALANCE
OF
BATTERY
STORAGE
SYSTEM
62
BALANCE
OF
DEMAND
AND
SUPPLY
62
KEY
OPERATION
CONSTRAINTS
62
GLOBAL
MODEL
63
MODEL
SOLVING
64
CASE
STUDY
65
CASE
DESCRIPTION
65
DATA
COLLECTION
66
CALCULATION
RESULTS
AND
ANALYSIS
67
RESULTS
UNDER
DIFFERENT
SCENARIOS
67
RESULTS
OF
ENERGY
BALANCE
69
CONTENTS
VII
3.4.4.1
INFLUENCE
OF
ELECTRICITY
PRICE
69
3.4.4.2
INFLUENCE
OF
NATURAL
RESOURCES
70
3.5
COMPREHENSIVE
DISCUSSION
71
3.5.1
RELATED
PROPOSITIONS
71
3.5.2
MANAGEMENT
RECOMMENDATIONS
72
REFERENCES
73
4
DISASTER
RESILIENCE-ORIENTED
DEPLOYMENT
OF
HYBRID
WIND-SOLAR-STORAGE-GAS
SYSTEM
79
4.1
4.2
4.2.1
4.2.2
4.2.3
4.3
4.3.1
4.3.2
4.3.2.1
BACKGROUND
REVIEW
80
MAIN
ISSUE
DESCRIPTION
81
SYSTEM
SCHEMATIC
81
RESILIENCE
CHARACTERIZATION
82
OPTIMIZATION
SCHEME
83
MATHEMATICAL
MODELING
85
NOTATIONS
85
RESILIENT
DEPLOYMENT
87
THE
UPPER-LEVEL
DECISION
MAKER:
TO
MAXIMIZE
THE
USE
OF
CLEAN
ENERGY
87
4.3.2.2
4.3.2.3
4.3.2.4
4.3.2.5
4.3.2.6
4.3.2.7
4.3.2.8
4.3.2.9
4.3.2.10
4.3.2.11
4.3.3
4.3.4
4.4
4.4.1
4.4.2
4.4.3
4.4.3.1
4.4.3.2
4.4.3.3
4.4.3.4
4.4.3.5
4.5
4.5.1
4.5.2
TO
MINIMIZE
THE
TOTAL
ANNUAL
POWER
COSTS
87
TO
MINIMIZE
CARBON
EMISSIONS
88
TO
MAXIMIZE
POWER
SYSTEM
RESILIENCE
88
CLEAN
ENERGY
USE
RESTRICTIONS
89
INSTALLATION
AREA
RESTRICTION
89
PV
PANEL
OPERATION
89
ENERGY
STORAGE
SYSTEM
OPERATION
90
BATTERY
STATE
RESTRICTIONS
90
GAS
TURBINE
OPERATION
90
POWER
SUPPLY
AND
DEMAND
BALANCE
91
GLOBAL
MODEL
91
MODEL
SOLVING
92
CASE
STUDY
93
CASE
DESCRIPTION
94
DATA
COLLECTION
94
CALCULATION
RESULTS
AND
ANALYSIS
95
MAXIMUM
RESILIENCE
EMISSION
RESULTS
97
COMPARISON
OF
DIFFERENT
SCENARIOS
98
OPERATION
UNDER
NORMAL
MODES
98
OPERATION
UNDER
EXTREME
DISASTERS
101
INFLUENCE
OF
CHANGING
MARKET
PRICES
104
COMPREHENSIVE
DISCUSSION
105
RELATED
PROPOSITIONS
105
MANAGEMENT
RECOMMENDATIONS
106
REFERENCES
107
VIII
CONTENTS
5
BI-LEVEL
EMISSION
QUOTA
ALLOCATION
TOWARD
COAL
AND
BIOMASS
CO-COMBUSTION
113
5.1
5.2
5.2.1
5.2.2
5.2.3
5.3
5.3.1
5.3.2
5.3.2.1
5.3.2.2
5.3.2.3
5.3.2.4
5.3.2.5
BACKGROUND
REVIEW
113
MAIN
ISSUES
'
DESCRIPTION
115
SYSTEM
SCHEMATIC
116
UNCERTAIN
DECISION-MAKING
ENVIRONMENT
116
BI-LEVEL
DECISION-MAKING
STRUCTURE
116
MODELING
118
NOTATIONS
118
PERSPECTIVE
FROM
THE
LOCAL
AUTHORITY
119
TO
MAXIMIZE
THE
REVENUE
119
TO
MINIMIZE
THE
TOTAL
CARBON
EMISSIONS
119
LIMITATIONS
ON
EACH
CPP
'
S
CARBON
EMISSIONS
119
GUARANTEE
OF
POWER
SUPPLY
120
GAP
BETWEEN
THE
ASSIGNED
EMISSION
QUOTA
AND
THE
ACTUAL
EMISSIONS
120
5.3.3
5.3.3.1
5.3.3.2
5.3.3.3
5.3.3.4
5.3.3.5
5.3.3.6
5.3.3.7
5.3.3.8
5.3.3.9
5.3.3.10
5.3.4
5.3.5
5.4
5.4.1
5.4.2
5.4.3
5.5
5.5.1
5.5.2
PERSPECTIVE
FROM
THE
CPPS
120
TO
MAXIMIZE
PROFITS
OF
ELECTRICITY
GENERATION
120
COMBUSTION
EFFICIENCY
121
FUEL
QUANTITY
REQUIREMENTS
121
FUEL
QUALITIES
'
REQUIREMENTS
121
BLENDING
RATIO
LIMITATION
OF
BIOMASS
122
RESPONSIBILITY
TO
ENSURE
POWER
SUPPLY
122
EMISSIONS
QUOTA
CONSTRAINTS
122
DYNAMIC
FUEL
STORAGE
123
LOGISTIC
CONSTRAINT
ON
FUEL
STORAGE
123
LIMITATION
OF
WAREHOUSING
ABILITY
123
GLOBAL
MODEL
123
MODEL
SOLVING
125
CASE
STUDY
125
CASE
DESCRIPTION
125
DATA
COLLECTION
128
RESULTS
UNDER
DIFFERENT
SCENARIOS
128
DISCUSSION
132
PROPOSITIONS
AND
ANALYSES
132
POLICY
IMPLICATIONS
137
REFERENCES
139
6
BI-LEVEL
EMISSION
QUOTA
ALLOCATION
TOWARD
COAL
AND
MUNICIPAL
SOLID
WASTE
CO-COMBUSTION
143
6.1
6.2
6.2.1
6.2.2
6.2.3
BACKGROUND
REVIEW
144
MAIN
ISSUE
DESCRIPTION
145
SYSTEM
SCHEMATIC
145
UNCERTAIN
DECISION-MAKING
146
BI-LEVEL
RELATIONSHIP
147
CONTENTS
IX
6.3
6.3.1
6.3.2
6.3.2.1
6.3.2.2
6.3.2.3
6.3.2.4
6.3.3
6.3.3.1
6.3.3.2
6.3.3.3
6.3.3.4
6.3.4
6.3.5
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.4.1
6.4.4.2
6.4.4.3
6.4.4.4
6.4.4.5
6.4.4.6
6.4.5
6.4.5.1
6.4.5.2
6.4.5.3
6.4.5.4
6.5
6.5.1
6.5.2
MODELING
148
NOTATIONS
149
MODELING
DESCRIPTION
FOR
REGIONAL
AUTHORITY
150
TO
MAXIMIZE
REVENUE
150
EMISSION
QUOTA
LIMITATION
150
TOTAL
EMISSIONS
LIMITATION
151
POWER
SUPPLY
AND
DEMAND
RISK
151
MODELING
DESCRIPTION
FOR
EACH
IPP
151
TO
MAXIMIZE
PROFITS
151
AVAILABLE
CAPACITY
LIMITATIONS
OF
POWER
PLANTS
152
QUALITY
REQUIREMENTS
OF
FUELS
152
COMBUSTION
TECHNICAL
REQUIREMENTS
153
GLOBAL
MODEL
153
SOLUTION
APPROACH
154
CASE
STUDY
157
CASE
PRESENTATION
157
DATA
COLLECTION
157
CALCULATION
RESULTS
161
RESULTS
OF
DIFFERENT
SCENARIOS
161
SO:
BASELINE
SCENARIO,
A
=
L
161
S1:
INITIAL
CURB
SCENARIO,
A
=
0.9
163
S2:
MODERATE
CURB
SCENARIO,
A
=
0.9
163
S3:
SERIOUS
CURB
SCENARIO,
A
=
0.85
163
S4:
VIGOROUS
CURB
SCENARIO,
A
=
0.8
164
S5:
MAXIMAL
LIMITATION
SCENARIO,
A
=
0.75
164
SCENARIO
RESULTS
COMPARISON
164
COMPARISON
OF
TOTAL
CARBON
EMISSIONS
AT
EACH
POWER
PLANT
164
CARBON
EMISSIONS
FROM
DIFFERENT
FUELS
AT
EACH
POWER
PLANT
165
COMPARISON
OF
REVENUE,
COSTS,
AND
PROFITS
AT
EACH
POWER
PLANT
167
INFLUENCE
OF
SUBSIDY
VARIATION
ON
PROFITS
TREND
167
COMPREHENSIVE
DISCUSSION
169
POLICY
IMPLICATIONS
169
INDUSTRIAL
MANAGEMENT
RECOMMENDATIONS
171
REFERENCES
171
7
BI-LEVEL
MULTI-OBJECTIVE
EMISSION
QUOTA
ALLOCATION
TOWARD
COAL
AND
SEWAGE
CO-COMBUSTION
175
7.1
7.2
7.2.1
7.2.2
7.2.3
7.3
7.3.1
7.3.2
BACKGROUND
REVIEW
176
MAIN
ISSUE
DESCRIPTION
177
SYSTEM
SCHEMATIC
177
UNCERTAIN
DECISION
ENVIRONMENT
177
OPTIMIZATION
SCHEME
178
MODELING
180
NOTATIONS
180
ALLOCATION
SCHEME
FOR
THE
AUTHORITY
181
CONTENTS
7.3.2.1
7.3.2.2
7.3.2.3
7.3.2.4
7.3.2.5
7.3.2.6
7.3.2.7
7.3.3
7.3.3.1
7.3.3.2
7.3.3.3
7.3.3.4
7.3.4
7.3.5
7.4
7.4.1
7.4.2
7.4.3
7.4.3.1
7.4.4
7.4.4.1
MAXIMIZING
ECONOMIC
BENEFITS
181
MINIMIZING
CARBON
EMISSION
INTENSITY
181
MAXIMIZING
SLUDGE
UTILIZATION
182
BENCHMARK
ALLOCATION
METHOD
182
THE
CONTROL
OF
CARBON
EMISSION
182
POWER
SUPPLY
AND
DEMAND
BALANCE
183
BOUNDS
OF
QUOTAS
183
STRATEGY
FOR
COAL-FIRED
PLANTS
183
MAXIMIZING
PROFITS
183
QUALITY
REQUIREMENTS
ON
FUEL
184
RESTRICTIONS
ON
POLLUTANT
EMISSION
184
AVAILABLE
QUANTITIES
OF
FUEL
185
GLOBAL
MODEL
185
MODEL
SOLVING
185
CASE
STUDY
187
CASE
DESCRIPTION
187
DATA
COLLECTION
187
CALCULATION
RESULTS
191
ANALYSIS
UNDER
DIFFERENT
OBJECTIVE
WEIGHTS
191
SCENARIO
ANALYSIS
192
SCENARIO
1:
RESULTS
UNDER
DIFFERENT
LEVELS
OF
CARBON
EMISSION
REDUCTIONS
194
7.4.4.2
SCENARIO
2:
RESULTS
UNDER
DIFFERENT
CARBON
EMISSION
INTENSITY
REDUCTION
TARGETS
195
7.5
7.5.1
7.5.2
COMPREHENSIVE
DISCUSSION
196
MODEL
COMPARISON
197
POLICY
IMPLICATIONS
198
REFERENCES
199
8
RELIABLE-ECONOMICAL
SCHEDULING
OF
HYBRID
SOLAR-HYDRO
SYSTEM
203
8.1
8.2
8.2.1
8.2.2
8.2.3
8.3
8.3.1
8.3.2
8.3.2.1
8.3.2.2
8.3.3
8.3.3.1
8.3.3.2
8.3.3.3
BACKGROUND
REVIEW
204
KEY
PROBLEM
STATEMENT
206
SYSTEM
DESCRIPTION
206
TRADE-OFF
BETWEEN
RELIABLE
AND
ECONOMICAL
POWER
SUPPLY
207
HANDLING
RENEWABLE
ENERGY
UNCERTAINTIES
208
MODELING
209
NOTATIONS
209
HYBRID
SYSTEM
'
S
RELIABILITY
AND
ECONOMY
EQUILIBRIUM
210
MAXIMIZE
POWER
SUPPLY
RELIABILITY
210
MAXIMIZE
ELECTRICITY
SALES
REVENUE
211
CONSTRAINTS
OF
THE
HYBRID
SYSTEM
211
PHOTOVOLTAIC
POWER
PLANT
'
S
OUTPUT
211
ACCESSIBLE
PHOTOVOLTAIC
ARRAYS
212
SOLAR
POWER
OUTPUT
LIMITATION
212
CONTENTS
8.3.3.4
8.3.3.5
8.3.3.6
8.3.3.7
8.3.3.8
8.3.4
8.3.5
8.4
8.4.1
8.4.2
8.4.3
8.4.3.1
8.4.3.2
8.4.3.3
8.4.3.4
8.5
8.5.1
8.5.2
8.5.3
HYDRO
TURBINE
OUTPUT
213
LIMITATION
ON
AVAILABLE
WATER
213
DYNAMIC
WATER
INVENTORY
213
LIMIT
ON
THE
ABILITY
OF
POWER
TRANSMISSION
214
LIMIT
ON
THE
STABILITY
OF
POWER
TRANSMISSION
214
GLOBAL
MODEL
214
MODEL
SOLVING
216
CASE
STUDY
217
CASE
DESCRIPTION
217
DATA
COLLECTION
219
CALCULATION
RESULTS
220
TECHNICAL
OUTPUT
ANALYSIS
223
POWER
OUTPUT
RATIO
ANALYSIS
224
HOURLY
POWER
OUTPUT
ANALYSIS
225
ECONOMIC
BENEFITS
ANALYSIS
225
DISCUSSION
228
COMPARATIVE
STUDY
228
RELATED
PROPOSITIONS
229
MANAGEMENT
RECOMMENDATIONS
231
REFERENCES
232
9
RELIABLE-ECONOMICAL
EQUILIBRIUM-BASED
SHORT-TERM
SCHEDULING
OF
HYBRID
SOLAR-WIND-GAS
SYSTEM
237
9.1
9.2
9.2.1
9.2.2
9.2.3
9.3
9.3.1
9.3.2
9.3.2.1
9.3.2.2
9.3.3
9.3.3.1
9.3.3.2
9.3.3.3
9.3.3.4
9.3.3.5
9.3.3.6
9.3.3.7
9.3.4
9.3.5
9.3.5.1
BACKGROUND
REVIEW
238
KEY
PROBLEM
STATEMENT
239
SYSTEM
DESCRIPTION
240
RESOLVING
RENEWABLE
ENERGY
UNCERTAINTIES
240
ACHIEVING
RELIABLE-ECONOMICAL
EQUILIBRIUM
242
MODELING
243
NOTATIONS
243
TO
GUARANTEE
ECONOMIC
BENEFITS
AND
RELIABILITY
244
TO
MAXIMIZE
TOTAL
INCOME
244
TO
MINIMIZE
THE
DEVIATION
OF
POWER
SUPPLY
AND
DEMAND
245
CONSTRAINTS
OF
SYSTEM
COMPONENTS
245
OUTPUT
OF
SOLAR
POWER
PLANTS
245
SOLAR
POWER
OUTPUT
LIMITATION
246
POWER
OUTPUT
OF
WIND
FARM
246
WIND
POWER
OUTPUT
LIMITATION
246
OUTPUT
OF
NATURAL
GAS
POWER
PLANTS
247
OPERATION
LIMITATIONS
OF
NATURAL
GAS
TURBINES
247
SYSTEM
SPINNING
RESERVE
247
GLOBAL
MODEL
247
MATHEMATICAL
SOLVING
249
TRANSFORMING
THE
MULTI-OBJECTIVE
MODEL
USING
E-CONSTRAINT
METHOD
249
XII
CONTENTS
9.3.5.2
9.4
9.4.1
9.4.2
9.5
9.5.1
9.5.2
9.5.3
9.6
9.6.1
9.6.2
9.6.3
SELECT
THE
OPTIMAL
SOLUTION
USING
FUZZY
SATISFYING
METHOD
249
CASE
STUDY
250
CASE
DESCRIPTION
250
DATA
COLLECTION
251
CALCULATION
RESULTS
AND
ANALYSIS
255
OPTIMAL
SOLUTIONS
255
ECONOMIC
BENEFITS
ANALYSIS
255
SYSTEM
RELIABILITY
ANALYSIS
257
COMPREHENSIVE
DISCUSSION
260
RELATED
PROPOSITIONS
260
COMPARATIVE
STUDY
262
MANAGEMENT
RECOMMENDATIONS
263
REFERENCES
264
10
RELIABLE-ECONOMICAL-SOCIAL
EQUILIBRIUM-BASED
SCHEDULING
OF
HYBRID
SOLAR-WIND-HYDRO
SYSTEM
269
10.1
10.2
10.2.1
10.2.2
10.2.3
10.3
10.3.1
10.3.2
10.3.2.1
10.3.2.2
10.3.2.3
10.3.2.4
10.3.3
10.3.3.1
10.3.3.2
10.3.3.3
10.3.3.4
10.3.3.5
10.3.4
10.3.5
10.4
10.4.1
10.4.2
10.5
10.5.1
10.5.2
BACKGROUND
REVIEW
269
KEY
PROBLEM
STATEMENT
271
SYSTEM
DESCRIPTION
271
MULTI-OBJECTIVE
DECISION-MAKING
PROBLEM
272
SEASONAL
AND
DAILY
UNCERTAINTIES
273
MODELING
274
NOTATIONS
274
FOUR
MAIN
GOALS
CONSIDERED
FOR
THE
HYBRID
SYSTEM
275
MAXIMIZING
COMPLEMENTARY
RATE
275
MAXIMIZING
POWER
SUPPLY
RELIABILITY
276
MINIMIZING
NEW
ENERGY
CURTAILMENTS
277
MAXIMIZING
YEARLY
POWER
SUPPLY
PROFITS
277
CONSTRAINTS
OF
THE
HYBRID
SYSTEM
277
NEW
ENERGY
OUTPUT
LIMITATION
277
HYDROPOWER
OUTPUT
LIMITATION
278
WATER
FLOW
LIMITATION
278
WATER
VOLUME
LIMITATION
278
TRANSMISSION
CAPACITY
LIMITATION
279
GLOBAL
MODEL
279
MODEL
SOLVING
280
CASE
STUDY
281
CASE
DESCRIPTION
281
DATA
COLLECTION
283
RESULTS
284
COMPLEMENTARY
RATES
OF
NEW
ENERGIES
286
RESULTS
UNDER
DIFFERENT
RELIABILITY
AND
COMPLEMENTARITY
RATES
288
10.5.3
RESULTS
UNDER
DIFFERENT
NEW
ENERGY
CURTAILMENT
RATES
290
CONTENTS
XIII
10.5.4
10.6
10.6.1
10.6.2
COMPARISON
OF
DIFFERENT
SYSTEMS
293
DISCUSSION
293
CORE
FINDINGS
295
MANAGEMENT
RECOMMENDATIONS
296
REFERENCES
297
11
OPTIMAL
RPS
IMPLEMENTATION
STRATEGY
CONSIDERING
BOTH
POWER
SUPPLIERS
AND
USERS
301
11.1
11.2
11.2.1
11.2.2
11.2.3
11.3
11.3.1
11.3.2
11.3.3
11.3.3.1
11.3.3.2
11.3.3.3
11.3.4
11.3.4.1
11.3.4.2
11.3.4.3
11.3.4.4
11.3.5
11.3.6
11.4
11.4.1
11.4.2
11.4.3
11.4.3.1
11.4.3.2
11.4.3.3
11.5
11.5.1
11.5.1.1
11.5.1.2
11.5.2
11.5.2.1
11.5.2.2
11.5.2.3
11.5.3
BACKGROUND
REVIEW
301
KEY
PROBLEM
STATEMENT
303
DECISION
PROCESS
DESCRIPTION
303
POWER
USER
CLASSIFICATIONS
304
MULTI-OBJECTIVES
OF
DEMAND
AND
SUPPLY
SIDES
304
MODELING
305
ASSUMPTIONS
305
NOTATIONS
305
OBJECTIVES
306
TO
MINIMIZE
THE
ELECTRICITY
TARIFF
VARIATIONS
307
TO
MINIMIZE
TOTAL
COSTS
307
TO
MAXIMIZE
RPS
308
PROVINCIAL
POWER
CONSTRAINTS
308
POWER
GENERATION
AND
CONSUMPTION
BALANCE
308
POWER
SALE
LIMITATIONS
309
POWER
TRANSMISSION
LIMITATIONS
309
RPS
AND
NON-HYDRO
RPS
TARGET
LIMITATIONS
309
GLOBAL
MODEL
310
MODEL
SOLVING
311
CASE
STUDY
314
CASE
DESCRIPTION
314
DATA
COLLECTION
314
CALCULATION
RESULTS
317
DETAILS
OF
POWER
CONSUMPTION
FOR
THREE
GROUPS
OF
USERS
317
DETAILS
OF
GUANGDONG
PROVINCE
'
S
POWER
SCHEDULE
318
THREE
KEY
FINDINGS
FROM
THE
RESULTS
ANALYSIS
318
DISCUSSION
319
COMPARISON
WITH
THE
EXISTING
SCHEDULE
319
COMPARISON
OF
POWER
TARIFF
AND
POLICY
ACCEPTANCE
320
GENERATION
COSTS
AND
CO
2
EMISSIONS
320
SCENARIO
ANALYSIS
322
RE
CONSUMPTION
PROPORTION
RESULTS
323
POWER
TARIFF
RESULTS
324
GENERATION
COST
AND
CO
2
EMISSION
RESULTS
325
KEY
FINDING
326
REFERENCES
327
XIV
CONTENTS
12
OPTIMAL
RPS
IMPLEMENTATION
STRATEGY
CONSIDERING
EQUITY
AND
ECONOMY
EQUILIBRIUM
331
12.1
12.2
12.2.1
12.2.2
12.3
12.3.1
12.3.2
12.3.2.1
12.3.2.2
12.3.3
12.3.3.1
12.3.3.2
12.3.3.3
12.3.3.4
12.3.4
12.3.5
12.4
12.4.1
12.4.2
12.4.3
12.4.3.1
12.4.3.2
INTRODUCTION
331
KEY
PROBLEM
STATEMENT
333
BI-LEVEL
RELATIONSHIP
333
EQUITY
AND
ECONOMY
TRADE-OFF
334
MODELING
335
NOTATIONS
335
CENTRAL
GOVERNMENT
'
S
EQUITY
CONCERN
336
EQUITABLE
ALLOCATION
336
RENEWABLE
ENERGY
CONSUMPTION
RATIO
337
THE
PROVINCIAL
GOVERNMENT
'
S
ECONOMIC
CONCERN
337
THE
BALANCE
OF
RENEWABLE
ELECTRICITY
GENERATION
AND
TRADING
338
THE
BALANCE
OF
POWER
SUPPLY
AND
DEMAND
338
LIMITATION
OF
GENERATION
CAPACITY
338
LIMITATION
OF
TRANSMISSION
CAPACITY
339
GLOBAL
MODEL
339
MODEL-SOLVING
APPROACH
340
CASE
STUDY
341
CASE
DESCRIPTION
341
DATA
COLLECTION
341
CALCULATION
RESULTS
345
GENERATION
AND
TRADING
RESULTS
FOR
INDIVIDUAL
PROVINCES
345
THE
MINIMUM
AND
MAXIMUM
RPS
THAT
CAN
BE
ACHIEVED
FOR
INDIVIDUAL
PROVINCES
347
12.4.3.3
12.5
12.5.1
12.5.1.1
12.5.1.2
12.5.1.3
12.5.1.4
12.5.2
RESULTS
OF
CENTRAL
GOVERNMENT
CONSIDERING
ALLOCATION
EQUITY
348
DISCUSSIONS
348
TRADE-OFFS
BETWEEN
EQUITY
AND
ECONOMY
348
COMPARISON
OF
INTEGRATED
SCORES
351
COMPARISON
OF
MAXIMUM
EQUITY
PARAMETER
351
COMPARISON
OF
THE
COST-CHANGE
RATE
351
COMPARISON
OF
GENERATION
STRATEGY
354
KEY
FINDINGS
354
REFERENCES
355
13
OPTIMAL
RPS
IMPLEMENTATION
STRATEGY
CONSIDERING
EMISSION
TRADE
AND
GREEN
CERTIFICATE
TRADE
359
13.1
13.2
13.2.1
13.2.2
13.3
13.3.1
13.3.2
13.3.3
INTRODUCTION
359
KEY
PROBLEM
STATEMENT
361
INTEGRATION
OF
THE
TGC
AND
CET
POLICIES
361
INTERACTION
OF
POWER
GENERATION
AND
TRADING
363
MODELING
364
ASSUMPTIONS
364
NOTATIONS
365
POWER
GENERATION
AND
TRADING
OBJECTIVES
366
CONTENTS
XV
INDEX
395
13.3.3.1
13.3.3.2
13.3.4
13.3.4.1
13.3.4.2
13.3.4.3
13.3.4.4
13.3.4.5
13.3.4.6
13.3.4.7
13.3.4.8
13.3.4.9
13.3.5
13.3.6
13.3.6.1
13.3.6.2
13.4
13.4.1
13.4.2
13.4.2.1
13.4.2.2
13.4.3
13.4.3.1
13.4.3.2
13.5
13.5.1
13.5.1.1
13.5.1.2
13.5.1.3
13.5.1.4
13.5.2
ECONOMIC
PERFORMANCE
366
ENVIRONMENTAL
PROTECTION
367
GENERATION
AND
TRADING
CONSTRAINTS
367
RENEWABLE
POWER
GENERATION
CAPACITY
LIMITATION
367
TRADITIONAL
POWER
GENERATION
CAPACITY
LIMITATION
367
POWER
DEMAND
AND
SUPPLY
BALANCE
368
POWER
TRANSMISSION
LIMITATION
368
POWER
TRADING
CONSTRAINTS
368
TGC
TRADING
CONSTRAINTS
368
CET
TRADING
CONSTRAINTS
368
RPS-BUNDLED
TGC
CONSUMPTION
369
CET
QUOTA
CONSTRAINTS
369
GLOBAL
MODEL
369
MODEL
SOLVING
370
MODEL
TRANSFORMATION
PROCESS
371
APPLYING
FUZZY
SATISFYING
APPROACH
TO
SELECT
THE
OPTIMAL
SOLUTION
372
CASE
STUDY
372
CASE
DESCRIPTION
372
DATA
COLLECTION
374
TECHNICAL
GENERATION
PARAMETERS
374
POLICY-RELATED
PARAMETERS
375
CALCULATION
RESULTS
AND
ANALYSIS
375
RESULTS
OF
POWER
GENERATION
AND
TRADING
375
RESULTS
OF
ECONOMIC-ENVIRONMENTAL
TRADE-OFFS
378
DISCUSSION
378
SCENARIO
ANALYSES
378
SCENARIO
SETTINGS
379
ECONOMIC
AND
ENVIRONMENTAL
TRADE-OFFS
UNDER
DIFFERENT
SCENARIO
379
POWER
GENERATION
RESULTS
UNDER
DIFFERENT
SCENARIOS
380
POWER
TRADING
RESULTS
UNDER
DIFFERENT SCENARIOS
380
KEY
FINDINGS
381
REFERENCES
382
14
EMERGING
HYBRID
ENERGY
STORAGE
SYSTEMS
387
REFERENCES
394 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Xu, Jiuping 1962- Wang, Fengjuan |
author_GND | (DE-588)137202369 (DE-588)1324566914 |
author_facet | Xu, Jiuping 1962- Wang, Fengjuan |
author_role | aut aut |
author_sort | Xu, Jiuping 1962- |
author_variant | j x jx f w fw |
building | Verbundindex |
bvnumber | BV049611004 |
ctrlnum | (OCoLC)1430764424 (DE-599)DNB1304403998 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000008c 4500</leader><controlfield tag="001">BV049611004</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240416</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">240313s2024 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">23,N40</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1304403998</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527352432</subfield><subfield code="c">: EUR 159.00 (DE) (freier Preis), EUR 163.50 (AT) (freier Preis)</subfield><subfield code="9">978-3-527-35243-2</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527352432</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 1135243 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1430764424</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1304403998</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">620</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xu, Jiuping</subfield><subfield code="d">1962-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)137202369</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sustainable hybrid energy systems</subfield><subfield code="b">carbon neutral approaches, modeling, and case studies</subfield><subfield code="c">Jiuping Xu and Fengjuan Wang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxix, 400 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">24.4 cm x 17 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Energieversorgung</subfield><subfield code="0">(DE-588)4014736-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sektorkopplung</subfield><subfield code="0">(DE-588)1215284845</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Erneuerbare Energien</subfield><subfield code="0">(DE-588)4068598-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modellierung</subfield><subfield code="0">(DE-588)4170297-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">CO2-Bilanz</subfield><subfield code="0">(DE-588)1176540750</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">EG30: Erneuerbare Energien</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">EN40: Umweltmanagement, Politik u. -Planung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Energie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Energiesysteme</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Energy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Environmental Management, Policy & Planning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Environmental Studies</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Erneuerbare Energien</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hybrid</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">MA81: Mathematische Modellierung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mathematical Modeling</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mathematics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mathematik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mathematische Modellierung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Nachhaltige Energietechnik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Renewable Energy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Umweltforschung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Umweltmanagement</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Umweltmanagement, Politik u. -Planung</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Energieversorgung</subfield><subfield code="0">(DE-588)4014736-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Erneuerbare Energien</subfield><subfield code="0">(DE-588)4068598-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Sektorkopplung</subfield><subfield code="0">(DE-588)1215284845</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">CO2-Bilanz</subfield><subfield code="0">(DE-588)1176540750</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Modellierung</subfield><subfield code="0">(DE-588)4170297-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Fengjuan</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1324566914</subfield><subfield code="4">aut</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Wiley-VCH</subfield><subfield code="0">(DE-588)16179388-5</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-527-84325-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-527-84326-8</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, oBook</subfield><subfield code="z">978-3-527-84327-5</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-35243-2/</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034955219&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">vlb</subfield><subfield code="d">20230929</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#vlb</subfield></datafield></record></collection> |
id | DE-604.BV049611004 |
illustrated | Illustrated |
index_date | 2024-07-03T23:36:13Z |
indexdate | 2024-07-20T05:07:06Z |
institution | BVB |
institution_GND | (DE-588)16179388-5 |
isbn | 9783527352432 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034955219 |
oclc_num | 1430764424 |
open_access_boolean | |
owner | DE-29T DE-703 |
owner_facet | DE-29T DE-703 |
physical | xxix, 400 Seiten Illustrationen, Diagramme 24.4 cm x 17 cm |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Xu, Jiuping 1962- Verfasser (DE-588)137202369 aut Sustainable hybrid energy systems carbon neutral approaches, modeling, and case studies Jiuping Xu and Fengjuan Wang Weinheim Wiley-VCH [2024] xxix, 400 Seiten Illustrationen, Diagramme 24.4 cm x 17 cm txt rdacontent n rdamedia nc rdacarrier Energieversorgung (DE-588)4014736-8 gnd rswk-swf Sektorkopplung (DE-588)1215284845 gnd rswk-swf Erneuerbare Energien (DE-588)4068598-6 gnd rswk-swf Modellierung (DE-588)4170297-9 gnd rswk-swf CO2-Bilanz (DE-588)1176540750 gnd rswk-swf EG30: Erneuerbare Energien EN40: Umweltmanagement, Politik u. -Planung Energie Energiesysteme Energy Environmental Management, Policy & Planning Environmental Studies Erneuerbare Energien Hybrid MA81: Mathematische Modellierung Mathematical Modeling Mathematics Mathematik Mathematische Modellierung Nachhaltige Energietechnik Renewable Energy Umweltforschung Umweltmanagement Umweltmanagement, Politik u. -Planung Energieversorgung (DE-588)4014736-8 s Erneuerbare Energien (DE-588)4068598-6 s Sektorkopplung (DE-588)1215284845 s CO2-Bilanz (DE-588)1176540750 s Modellierung (DE-588)4170297-9 s DE-604 Wang, Fengjuan Verfasser (DE-588)1324566914 aut Wiley-VCH (DE-588)16179388-5 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-527-84325-1 Erscheint auch als Online-Ausgabe, EPUB 978-3-527-84326-8 Erscheint auch als Online-Ausgabe, oBook 978-3-527-84327-5 X:MVB http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-35243-2/ DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034955219&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p vlb 20230929 DE-101 https://d-nb.info/provenance/plan#vlb |
spellingShingle | Xu, Jiuping 1962- Wang, Fengjuan Sustainable hybrid energy systems carbon neutral approaches, modeling, and case studies Energieversorgung (DE-588)4014736-8 gnd Sektorkopplung (DE-588)1215284845 gnd Erneuerbare Energien (DE-588)4068598-6 gnd Modellierung (DE-588)4170297-9 gnd CO2-Bilanz (DE-588)1176540750 gnd |
subject_GND | (DE-588)4014736-8 (DE-588)1215284845 (DE-588)4068598-6 (DE-588)4170297-9 (DE-588)1176540750 |
title | Sustainable hybrid energy systems carbon neutral approaches, modeling, and case studies |
title_auth | Sustainable hybrid energy systems carbon neutral approaches, modeling, and case studies |
title_exact_search | Sustainable hybrid energy systems carbon neutral approaches, modeling, and case studies |
title_exact_search_txtP | Sustainable hybrid energy systems carbon neutral approaches, modeling, and case studies |
title_full | Sustainable hybrid energy systems carbon neutral approaches, modeling, and case studies Jiuping Xu and Fengjuan Wang |
title_fullStr | Sustainable hybrid energy systems carbon neutral approaches, modeling, and case studies Jiuping Xu and Fengjuan Wang |
title_full_unstemmed | Sustainable hybrid energy systems carbon neutral approaches, modeling, and case studies Jiuping Xu and Fengjuan Wang |
title_short | Sustainable hybrid energy systems |
title_sort | sustainable hybrid energy systems carbon neutral approaches modeling and case studies |
title_sub | carbon neutral approaches, modeling, and case studies |
topic | Energieversorgung (DE-588)4014736-8 gnd Sektorkopplung (DE-588)1215284845 gnd Erneuerbare Energien (DE-588)4068598-6 gnd Modellierung (DE-588)4170297-9 gnd CO2-Bilanz (DE-588)1176540750 gnd |
topic_facet | Energieversorgung Sektorkopplung Erneuerbare Energien Modellierung CO2-Bilanz |
url | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-35243-2/ http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034955219&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT xujiuping sustainablehybridenergysystemscarbonneutralapproachesmodelingandcasestudies AT wangfengjuan sustainablehybridenergysystemscarbonneutralapproachesmodelingandcasestudies AT wileyvch sustainablehybridenergysystemscarbonneutralapproachesmodelingandcasestudies |