Principles of data science: a beginner's guide to essential math and coding skills for data fluency and machine learning
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham
Packt Publishing
Jan 2024
|
Ausgabe: | Third edition |
Schlagworte: | |
Online-Zugang: | DE-1050 DE-91 DE-706 DE-945 URL des Erstveröffentlichers |
Beschreibung: | 1 Online-Ressource (xix, 300 Seiten) |
ISBN: | 9781837636006 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049600217 | ||
003 | DE-604 | ||
005 | 20241209 | ||
007 | cr|uuu---uuuuu | ||
008 | 240306s2024 xx o|||| 00||| eng d | ||
020 | |a 9781837636006 |9 978-1-83763-600-6 | ||
035 | |a (ZDB-221-PAI)9781837636006 | ||
035 | |a (OCoLC)1427321625 | ||
035 | |a (DE-599)BVBBV049600217 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1050 |a DE-945 |a DE-706 |a DE-91 | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
100 | 1 | |a Ozdemir, Sinan |e Verfasser |0 (DE-588)1153501937 |4 aut | |
245 | 1 | 0 | |a Principles of data science |b a beginner's guide to essential math and coding skills for data fluency and machine learning |c Sinan Ozdemir |
250 | |a Third edition | ||
264 | 1 | |a Birmingham |b Packt Publishing |c Jan 2024 | |
300 | |a 1 Online-Ressource (xix, 300 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
650 | 0 | 7 | |a Data Science |0 (DE-588)1140936166 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Data Science |0 (DE-588)1140936166 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-83763-630-3 |
856 | 4 | 0 | |u https://portal.igpublish.com/iglibrary/search/PACKT0007069.html |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-30-PQE | ||
912 | |a ZDB-221-PAI | ||
912 | |a ZDB-4-NLEBK | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034944664 | |
966 | e | |u https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=31084791 |l DE-1050 |p ZDB-30-PQE |q FHD01_PQE_Kauf |x Aggregator |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0007069.html |l DE-91 |p ZDB-221-PAI |q TUM_Paketkauf_2025 |x Verlag |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0007069.html |l DE-706 |p ZDB-221-PAI |x Verlag |3 Volltext | |
966 | e | |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=3780432 |l DE-945 |p ZDB-4-NLEBK |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1817960420357439488 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Ozdemir, Sinan |
author_GND | (DE-588)1153501937 |
author_facet | Ozdemir, Sinan |
author_role | aut |
author_sort | Ozdemir, Sinan |
author_variant | s o so |
building | Verbundindex |
bvnumber | BV049600217 |
classification_rvk | ST 300 |
collection | ZDB-30-PQE ZDB-221-PAI ZDB-4-NLEBK |
contents | Intro -- Title Page -- Copyright and Credits -- Dedication -- Contributor -- Table of Contents -- Preface -- Chapter 1: Data Science Terminology -- What is data science? -- Understanding basic data science terminology -- Why data science? -- Example -- predicting COVID-19 with machine learning -- The data science Venn diagram -- The math -- Computer programming -- Example -- parsing a single tweet -- Domain knowledge -- Some more terminology -- Data science case studies -- Case study -- automating government paper pushing -- Case study -- what's in a job description? -- Summary Chapter 2: Types of Data -- Structured versus unstructured data -- Quantitative versus qualitative data -- Digging deeper -- The four levels of data -- The nominal level -- Measures of center -- The ordinal level -- The interval level -- The ratio level -- Data is in the eye of the beholder -- Summary -- Questions and answers -- Chapter 3: The Five Steps of Data Science -- Introduction to data science -- Overview of the five steps -- Exploring the data -- Guiding questions for data exploration -- DataFrames -- Series -- Exploration tips for qualitative data -- Summary Chapter 4: Basic Mathematics -- Basic symbols and terminology -- Vectors and matrices -- Arithmetic symbols -- Summation -- Logarithms/exponents -- Set theory -- Linear algebra -- Matrix multiplication -- How to multiply matrices together -- Summary -- Chapter 5: Impossible or Improbable -- A Gentle Introduction to Probability -- Basic definitions -- What do we mean by "probability"? -- Bayesian versus frequentist -- Frequentist approach -- The law of large numbers -- Compound events -- Conditional probability -- How to utilize the rules of probability -- The addition rule -- Mutual exclusivity The multiplication rule -- Independence -- Complementary events -- Introduction to binary classifiers -- Summary -- Chapter 6: Advanced Probability -- Bayesian ideas revisited -- Bayes' theorem -- More applications of Bayes' theorem -- Random variables -- Discrete random variables -- Continuous random variables -- Summary -- Chapter 7: What Are the Chances? An Introduction to Statistics -- What are statistics? -- How do we obtain and sample data? -- Obtaining data -- Observational -- Experimental -- Sampling data -- How do we measure statistics? -- Measures of center -- Measures of variation The coefficient of variation -- Measures of relative standing -- The insightful part -- correlations in data -- The empirical rule -- Example -- exam scores -- Summary -- Chapter 8: Advanced Statistics -- Understanding point estimates -- Sampling distributions -- Confidence intervals -- Hypothesis tests -- Conducting a hypothesis test -- One-sample t-tests -- Type I and Type II errors -- Hypothesis testing for categorical variables -- Chi-square goodness of fit test -- Chi-square test for association/independence -- Summary -- Chapter 9: Communicating Data -- Why does communication matter? |
ctrlnum | (ZDB-221-PAI)9781837636006 (OCoLC)1427321625 (DE-599)BVBBV049600217 |
discipline | Informatik |
edition | Third edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV049600217</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241209</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240306s2024 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781837636006</subfield><subfield code="9">978-1-83763-600-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-221-PAI)9781837636006</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1427321625</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049600217</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ozdemir, Sinan</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1153501937</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Principles of data science</subfield><subfield code="b">a beginner's guide to essential math and coding skills for data fluency and machine learning</subfield><subfield code="c">Sinan Ozdemir</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Third edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham</subfield><subfield code="b">Packt Publishing</subfield><subfield code="c">Jan 2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xix, 300 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-83763-630-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0007069.html</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-221-PAI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-NLEBK</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034944664</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=31084791</subfield><subfield code="l">DE-1050</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0007069.html</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-221-PAI</subfield><subfield code="q">TUM_Paketkauf_2025</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0007069.html</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-221-PAI</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=3780432</subfield><subfield code="l">DE-945</subfield><subfield code="p">ZDB-4-NLEBK</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049600217 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:34:36Z |
indexdate | 2024-12-09T11:02:40Z |
institution | BVB |
isbn | 9781837636006 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034944664 |
oclc_num | 1427321625 |
open_access_boolean | |
owner | DE-1050 DE-945 DE-706 DE-91 DE-BY-TUM |
owner_facet | DE-1050 DE-945 DE-706 DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xix, 300 Seiten) |
psigel | ZDB-30-PQE ZDB-221-PAI ZDB-4-NLEBK ZDB-30-PQE FHD01_PQE_Kauf ZDB-221-PAI TUM_Paketkauf_2025 |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Packt Publishing |
record_format | marc |
spelling | Ozdemir, Sinan Verfasser (DE-588)1153501937 aut Principles of data science a beginner's guide to essential math and coding skills for data fluency and machine learning Sinan Ozdemir Third edition Birmingham Packt Publishing Jan 2024 1 Online-Ressource (xix, 300 Seiten) txt rdacontent c rdamedia cr rdacarrier Data Science (DE-588)1140936166 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Data Science (DE-588)1140936166 s Maschinelles Lernen (DE-588)4193754-5 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-83763-630-3 https://portal.igpublish.com/iglibrary/search/PACKT0007069.html Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Ozdemir, Sinan Principles of data science a beginner's guide to essential math and coding skills for data fluency and machine learning Intro -- Title Page -- Copyright and Credits -- Dedication -- Contributor -- Table of Contents -- Preface -- Chapter 1: Data Science Terminology -- What is data science? -- Understanding basic data science terminology -- Why data science? -- Example -- predicting COVID-19 with machine learning -- The data science Venn diagram -- The math -- Computer programming -- Example -- parsing a single tweet -- Domain knowledge -- Some more terminology -- Data science case studies -- Case study -- automating government paper pushing -- Case study -- what's in a job description? -- Summary Chapter 2: Types of Data -- Structured versus unstructured data -- Quantitative versus qualitative data -- Digging deeper -- The four levels of data -- The nominal level -- Measures of center -- The ordinal level -- The interval level -- The ratio level -- Data is in the eye of the beholder -- Summary -- Questions and answers -- Chapter 3: The Five Steps of Data Science -- Introduction to data science -- Overview of the five steps -- Exploring the data -- Guiding questions for data exploration -- DataFrames -- Series -- Exploration tips for qualitative data -- Summary Chapter 4: Basic Mathematics -- Basic symbols and terminology -- Vectors and matrices -- Arithmetic symbols -- Summation -- Logarithms/exponents -- Set theory -- Linear algebra -- Matrix multiplication -- How to multiply matrices together -- Summary -- Chapter 5: Impossible or Improbable -- A Gentle Introduction to Probability -- Basic definitions -- What do we mean by "probability"? -- Bayesian versus frequentist -- Frequentist approach -- The law of large numbers -- Compound events -- Conditional probability -- How to utilize the rules of probability -- The addition rule -- Mutual exclusivity The multiplication rule -- Independence -- Complementary events -- Introduction to binary classifiers -- Summary -- Chapter 6: Advanced Probability -- Bayesian ideas revisited -- Bayes' theorem -- More applications of Bayes' theorem -- Random variables -- Discrete random variables -- Continuous random variables -- Summary -- Chapter 7: What Are the Chances? An Introduction to Statistics -- What are statistics? -- How do we obtain and sample data? -- Obtaining data -- Observational -- Experimental -- Sampling data -- How do we measure statistics? -- Measures of center -- Measures of variation The coefficient of variation -- Measures of relative standing -- The insightful part -- correlations in data -- The empirical rule -- Example -- exam scores -- Summary -- Chapter 8: Advanced Statistics -- Understanding point estimates -- Sampling distributions -- Confidence intervals -- Hypothesis tests -- Conducting a hypothesis test -- One-sample t-tests -- Type I and Type II errors -- Hypothesis testing for categorical variables -- Chi-square goodness of fit test -- Chi-square test for association/independence -- Summary -- Chapter 9: Communicating Data -- Why does communication matter? Data Science (DE-588)1140936166 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)1140936166 (DE-588)4193754-5 |
title | Principles of data science a beginner's guide to essential math and coding skills for data fluency and machine learning |
title_auth | Principles of data science a beginner's guide to essential math and coding skills for data fluency and machine learning |
title_exact_search | Principles of data science a beginner's guide to essential math and coding skills for data fluency and machine learning |
title_exact_search_txtP | Principles of data science a beginner's guide to essential math and coding skills for data fluency and machine learning |
title_full | Principles of data science a beginner's guide to essential math and coding skills for data fluency and machine learning Sinan Ozdemir |
title_fullStr | Principles of data science a beginner's guide to essential math and coding skills for data fluency and machine learning Sinan Ozdemir |
title_full_unstemmed | Principles of data science a beginner's guide to essential math and coding skills for data fluency and machine learning Sinan Ozdemir |
title_short | Principles of data science |
title_sort | principles of data science a beginner s guide to essential math and coding skills for data fluency and machine learning |
title_sub | a beginner's guide to essential math and coding skills for data fluency and machine learning |
topic | Data Science (DE-588)1140936166 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Data Science Maschinelles Lernen |
url | https://portal.igpublish.com/iglibrary/search/PACKT0007069.html |
work_keys_str_mv | AT ozdemirsinan principlesofdatascienceabeginnersguidetoessentialmathandcodingskillsfordatafluencyandmachinelearning |