Applications of machine learning in big-data analytics and cloud computing:
Preface xv List of Contributors xxi List of Figures xxv List of Tables xxix List of Abbreviations xxxi 1 Pattern Analysis of COVID-19 Death and Recovery Cases Data of Countries Using Greedy Biclustering Algorithm 1 1.1 Introduction 2 1.2 Problem Description 3 1.2.1 Greedy Approach: Bicluster Size Ma...
Gespeichert in:
Weitere Verfasser: | , , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Gistrup
River Publishers
2021
|
Schriftenreihe: | River Publishers Series in Information Science and Technology
|
Schlagworte: | |
Online-Zugang: | UPA01 Volltext |
Zusammenfassung: | Preface xv List of Contributors xxi List of Figures xxv List of Tables xxix List of Abbreviations xxxi 1 Pattern Analysis of COVID-19 Death and Recovery Cases Data of Countries Using Greedy Biclustering Algorithm 1 1.1 Introduction 2 1.2 Problem Description 3 1.2.1 Greedy Approach: Bicluster Size Maximization Based Fitness Function 4 1.2.2 Data Description 5 1.3 Proposed Work: COVID 19 Pattern Identification Using Greedy Biclustering 7 1.4 Results and Discussions 8 1.5 Conclusion 18 1.6 Acknowledgements 18 References 18 2 Artificial Fish Swarm Optimization Algorithm with Hill Climbing Based Clustering Technique for Throughput Maximization in Wireless Multimedia Sensor Network 23 2.1 Introduction 24 2.2 The Proposed AFSA-HC Technique 27 2.2.1 AFSA-HC Based Clustering Phase 28 2.2.2 Deflate-Based Data Aggregation Phase 33 2.2.3 Hybrid Data Transmission Phase 34 2.3 Performance Validation 34 2.4 Conclusion 40 References 40 3 Analysis of Machine Learning Techniques for Spam Detection 43 3.1 Introduction 44 3.1.1 Ham Messages 44 3.1.2 Spam Messages 44 3.2 Types of Spam Attack 45 3.2.1 Email Phishing 45 3.2.2 Spear Phishing 45 3.2.3 Whaling 46 3.3 Spammer Methods 46 3.4 Some Prevention Methods From User End 46 3.4.1 Protect Email Addresses 46 3.4.2 Preventing Spam from Being Sent 47 3.4.3 Block Spam to be Delivered 48 3.4.4 Identify and Separate Spam After Delivery 48 3.4.4.1 Targeted Link Analysis 48 3.4.4.2 Bayesian Filters 48 3.4.5 Report Spam 48 3.5 Machine Learning Algorithms 48 3.5.1 Na̐ve Bayes (NB) 48 3.5.2 Random Forests (RF) 49 3.5.3 Support Vector Machine (SVM) 49 3.5.4 Logistic Regression (LR) 50 3.6 Methodology 51 3.6.1 Database Used 51 3.6.2 Work Flow 51 3.7 Results and Analysis 52 3.7.1 Performance Metric 52 3.7.2 Experimental Results 52 3.7.2.1 Cleaning Data by Removing Punctuations, White Spaces, and Stop Words 54 3.7.2.2 Stemming the Messages 55 3.7.2.3 Analyzing the Common Words from the Spam and Ham Messages 55 3.7.3 Analyses of Machine Learning Algorithms 55 3.7.3.1 Accuracy Score Before Stemming 55 3.7.3.2 Accuracy Score After Stemming 55 3.7.3.3 Splitting Dataset into Train and Test Data 56 3.7.3.4 Mapping Confusion Matrix 58 3.7.3.5 Accuracy 58 3.8 Conclusion and Future Work 59 References 59 4 Smart Sensor Based Prognostication of Cardiac Disease Prediction Using Machine Learning Techniques 63 4.1 Introduction 64 4.2 Literature Survey 65 4.3 Proposed Method 67 4.4 Data Collection in IoT 67 4.4.1 Fetching Data from Sensors 68 4.4.2 K-Nearest Neighbor Classifier 69 4.4.3 Random Forest Classifier 70 4.4.4 Decision Tree Classifier 70 4.4.5 Extreme Gradient Boost Classifier 71 4.5 Results and Discussions 72 4.6 Conclusion 78 4.7 Acknowledgements 78 References 78 5 Assimilate Machine Learning Algorithms in Big Data Analytics: Review 81 5.1 Introduction 82 5.2 Literature |
Beschreibung: | 1 Online-Ressource (xxxii, 313 Seiten) |
ISBN: | 9781003337218 |
DOI: | 10.1201/9781003337218 |
Internformat
MARC
LEADER | 00000nmm a22000001c 4500 | ||
---|---|---|---|
001 | BV049598078 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 240305s2021 |||| o||u| ||||||eng d | ||
020 | |a 9781003337218 |c Online |9 9781003337218 | ||
024 | 7 | |a 10.1201/9781003337218 |2 doi | |
035 | |a (OCoLC)1427317302 | ||
035 | |a (DE-599)KEP099687569 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-739 | ||
245 | 1 | 0 | |a Applications of machine learning in big-data analytics and cloud computing |c editors: Subhendu Kumar Pani, Somanath Tripathy, George Jandieri, Sumit Kundu, Talal Ashraf Butt |
264 | 1 | |a Gistrup |b River Publishers |c 2021 | |
300 | |a 1 Online-Ressource (xxxii, 313 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a River Publishers Series in Information Science and Technology | |
520 | 3 | |a Preface xv List of Contributors xxi List of Figures xxv List of Tables xxix List of Abbreviations xxxi 1 Pattern Analysis of COVID-19 Death and Recovery Cases Data of Countries Using Greedy Biclustering Algorithm 1 1.1 Introduction 2 1.2 Problem Description 3 1.2.1 Greedy Approach: Bicluster Size Maximization Based Fitness Function 4 1.2.2 Data Description 5 1.3 Proposed Work: COVID 19 Pattern Identification Using Greedy Biclustering 7 1.4 Results and Discussions 8 1.5 Conclusion 18 1.6 Acknowledgements 18 References 18 2 Artificial Fish Swarm Optimization Algorithm with Hill Climbing Based Clustering Technique for Throughput Maximization in Wireless Multimedia Sensor Network 23 2.1 Introduction 24 2.2 The Proposed AFSA-HC Technique 27 2.2.1 AFSA-HC Based Clustering Phase 28 2.2.2 Deflate-Based Data Aggregation Phase 33 2.2.3 Hybrid Data Transmission Phase 34 2.3 Performance Validation 34 2.4 Conclusion 40 References 40 3 Analysis of Machine Learning Techniques for Spam Detection | |
520 | 3 | |a 43 3.1 Introduction 44 3.1.1 Ham Messages 44 3.1.2 Spam Messages 44 3.2 Types of Spam Attack 45 3.2.1 Email Phishing 45 3.2.2 Spear Phishing 45 3.2.3 Whaling 46 3.3 Spammer Methods 46 3.4 Some Prevention Methods From User End 46 3.4.1 Protect Email Addresses 46 3.4.2 Preventing Spam from Being Sent 47 3.4.3 Block Spam to be Delivered 48 3.4.4 Identify and Separate Spam After Delivery 48 3.4.4.1 Targeted Link Analysis 48 3.4.4.2 Bayesian Filters 48 3.4.5 Report Spam 48 3.5 Machine Learning Algorithms 48 3.5.1 Na̐ve Bayes (NB) 48 3.5.2 Random Forests (RF) 49 3.5.3 Support Vector Machine (SVM) 49 3.5.4 Logistic Regression (LR) 50 3.6 Methodology 51 3.6.1 Database Used 51 3.6.2 Work Flow 51 3.7 Results and Analysis 52 3.7.1 Performance Metric 52 3.7.2 Experimental Results 52 3.7.2.1 Cleaning Data by Removing Punctuations, White Spaces, | |
520 | 3 | |a and Stop Words 54 3.7.2.2 Stemming the Messages 55 3.7.2.3 Analyzing the Common Words from the Spam and Ham Messages 55 3.7.3 Analyses of Machine Learning Algorithms 55 3.7.3.1 Accuracy Score Before Stemming 55 3.7.3.2 Accuracy Score After Stemming 55 3.7.3.3 Splitting Dataset into Train and Test Data 56 3.7.3.4 Mapping Confusion Matrix 58 3.7.3.5 Accuracy 58 3.8 Conclusion and Future Work 59 References 59 4 Smart Sensor Based Prognostication of Cardiac Disease Prediction Using Machine Learning Techniques 63 4.1 Introduction 64 4.2 Literature Survey 65 4.3 Proposed Method 67 4.4 Data Collection in IoT 67 4.4.1 Fetching Data from Sensors 68 4.4.2 K-Nearest Neighbor Classifier 69 4.4.3 Random Forest Classifier 70 4.4.4 Decision Tree Classifier 70 4.4.5 Extreme Gradient Boost Classifier 71 4.5 Results and Discussions 72 4.6 Conclusion 78 4.7 Acknowledgements 78 References 78 5 Assimilate Machine Learning Algorithms in Big Data Analytics: Review 81 5.1 Introduction 82 5.2 Literature | |
653 | 0 | |a Big data | |
653 | 0 | |a Machine learning | |
653 | 0 | |a Cloud computing | |
653 | 0 | |a COMPUTERS / Database Management / Data Mining | |
653 | 0 | |a SCIENCE / Energy | |
700 | 1 | |a Pani, Subhendu Kumar |d 1980- |0 (DE-588)1243682256 |4 edt | |
700 | 1 | |a Tripathy, Somanath |4 edt | |
700 | 1 | |a Jandieri, George |4 edt | |
700 | 1 | |a Kundu, Sumit |4 edt | |
700 | 1 | |a Butt, Talal Ashraf |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-87-7022-182-5 |
856 | 4 | 0 | |u https://doi.org/10.1201/9781003337218 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-7-CSC | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034942574 | ||
966 | e | |u https://doi.org/10.1201/9781003337218 |l UPA01 |p ZDB-7-CSC |q UPA_PDA_CSC_Kauf2023 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804186475773820928 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Pani, Subhendu Kumar 1980- Tripathy, Somanath Jandieri, George Kundu, Sumit Butt, Talal Ashraf |
author2_role | edt edt edt edt edt |
author2_variant | s k p sk skp s t st g j gj s k sk t a b ta tab |
author_GND | (DE-588)1243682256 |
author_facet | Pani, Subhendu Kumar 1980- Tripathy, Somanath Jandieri, George Kundu, Sumit Butt, Talal Ashraf |
building | Verbundindex |
bvnumber | BV049598078 |
collection | ZDB-7-CSC |
ctrlnum | (OCoLC)1427317302 (DE-599)KEP099687569 |
doi_str_mv | 10.1201/9781003337218 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04536nmm a22004691c 4500</leader><controlfield tag="001">BV049598078</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240305s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781003337218</subfield><subfield code="c">Online</subfield><subfield code="9">9781003337218</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1201/9781003337218</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1427317302</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP099687569</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applications of machine learning in big-data analytics and cloud computing</subfield><subfield code="c">editors: Subhendu Kumar Pani, Somanath Tripathy, George Jandieri, Sumit Kundu, Talal Ashraf Butt</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Gistrup</subfield><subfield code="b">River Publishers</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxxii, 313 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">River Publishers Series in Information Science and Technology</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Preface xv List of Contributors xxi List of Figures xxv List of Tables xxix List of Abbreviations xxxi 1 Pattern Analysis of COVID-19 Death and Recovery Cases Data of Countries Using Greedy Biclustering Algorithm 1 1.1 Introduction 2 1.2 Problem Description 3 1.2.1 Greedy Approach: Bicluster Size Maximization Based Fitness Function 4 1.2.2 Data Description 5 1.3 Proposed Work: COVID 19 Pattern Identification Using Greedy Biclustering 7 1.4 Results and Discussions 8 1.5 Conclusion 18 1.6 Acknowledgements 18 References 18 2 Artificial Fish Swarm Optimization Algorithm with Hill Climbing Based Clustering Technique for Throughput Maximization in Wireless Multimedia Sensor Network 23 2.1 Introduction 24 2.2 The Proposed AFSA-HC Technique 27 2.2.1 AFSA-HC Based Clustering Phase 28 2.2.2 Deflate-Based Data Aggregation Phase 33 2.2.3 Hybrid Data Transmission Phase 34 2.3 Performance Validation 34 2.4 Conclusion 40 References 40 3 Analysis of Machine Learning Techniques for Spam Detection </subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">43 3.1 Introduction 44 3.1.1 Ham Messages 44 3.1.2 Spam Messages 44 3.2 Types of Spam Attack 45 3.2.1 Email Phishing 45 3.2.2 Spear Phishing 45 3.2.3 Whaling 46 3.3 Spammer Methods 46 3.4 Some Prevention Methods From User End 46 3.4.1 Protect Email Addresses 46 3.4.2 Preventing Spam from Being Sent 47 3.4.3 Block Spam to be Delivered 48 3.4.4 Identify and Separate Spam After Delivery 48 3.4.4.1 Targeted Link Analysis 48 3.4.4.2 Bayesian Filters 48 3.4.5 Report Spam 48 3.5 Machine Learning Algorithms 48 3.5.1 Na̐ve Bayes (NB) 48 3.5.2 Random Forests (RF) 49 3.5.3 Support Vector Machine (SVM) 49 3.5.4 Logistic Regression (LR) 50 3.6 Methodology 51 3.6.1 Database Used 51 3.6.2 Work Flow 51 3.7 Results and Analysis 52 3.7.1 Performance Metric 52 3.7.2 Experimental Results 52 3.7.2.1 Cleaning Data by Removing Punctuations, White Spaces, </subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">and Stop Words 54 3.7.2.2 Stemming the Messages 55 3.7.2.3 Analyzing the Common Words from the Spam and Ham Messages 55 3.7.3 Analyses of Machine Learning Algorithms 55 3.7.3.1 Accuracy Score Before Stemming 55 3.7.3.2 Accuracy Score After Stemming 55 3.7.3.3 Splitting Dataset into Train and Test Data 56 3.7.3.4 Mapping Confusion Matrix 58 3.7.3.5 Accuracy 58 3.8 Conclusion and Future Work 59 References 59 4 Smart Sensor Based Prognostication of Cardiac Disease Prediction Using Machine Learning Techniques 63 4.1 Introduction 64 4.2 Literature Survey 65 4.3 Proposed Method 67 4.4 Data Collection in IoT 67 4.4.1 Fetching Data from Sensors 68 4.4.2 K-Nearest Neighbor Classifier 69 4.4.3 Random Forest Classifier 70 4.4.4 Decision Tree Classifier 70 4.4.5 Extreme Gradient Boost Classifier 71 4.5 Results and Discussions 72 4.6 Conclusion 78 4.7 Acknowledgements 78 References 78 5 Assimilate Machine Learning Algorithms in Big Data Analytics: Review 81 5.1 Introduction 82 5.2 Literature </subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Big data</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Cloud computing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">COMPUTERS / Database Management / Data Mining</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">SCIENCE / Energy</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pani, Subhendu Kumar</subfield><subfield code="d">1980-</subfield><subfield code="0">(DE-588)1243682256</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tripathy, Somanath</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jandieri, George</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kundu, Sumit</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Butt, Talal Ashraf</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-87-7022-182-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1201/9781003337218</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-7-CSC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034942574</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1201/9781003337218</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-7-CSC</subfield><subfield code="q">UPA_PDA_CSC_Kauf2023</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049598078 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:34:17Z |
indexdate | 2024-07-10T10:11:43Z |
institution | BVB |
isbn | 9781003337218 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034942574 |
oclc_num | 1427317302 |
open_access_boolean | |
owner | DE-739 |
owner_facet | DE-739 |
physical | 1 Online-Ressource (xxxii, 313 Seiten) |
psigel | ZDB-7-CSC ZDB-7-CSC UPA_PDA_CSC_Kauf2023 |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | River Publishers |
record_format | marc |
series2 | River Publishers Series in Information Science and Technology |
spelling | Applications of machine learning in big-data analytics and cloud computing editors: Subhendu Kumar Pani, Somanath Tripathy, George Jandieri, Sumit Kundu, Talal Ashraf Butt Gistrup River Publishers 2021 1 Online-Ressource (xxxii, 313 Seiten) txt rdacontent c rdamedia cr rdacarrier River Publishers Series in Information Science and Technology Preface xv List of Contributors xxi List of Figures xxv List of Tables xxix List of Abbreviations xxxi 1 Pattern Analysis of COVID-19 Death and Recovery Cases Data of Countries Using Greedy Biclustering Algorithm 1 1.1 Introduction 2 1.2 Problem Description 3 1.2.1 Greedy Approach: Bicluster Size Maximization Based Fitness Function 4 1.2.2 Data Description 5 1.3 Proposed Work: COVID 19 Pattern Identification Using Greedy Biclustering 7 1.4 Results and Discussions 8 1.5 Conclusion 18 1.6 Acknowledgements 18 References 18 2 Artificial Fish Swarm Optimization Algorithm with Hill Climbing Based Clustering Technique for Throughput Maximization in Wireless Multimedia Sensor Network 23 2.1 Introduction 24 2.2 The Proposed AFSA-HC Technique 27 2.2.1 AFSA-HC Based Clustering Phase 28 2.2.2 Deflate-Based Data Aggregation Phase 33 2.2.3 Hybrid Data Transmission Phase 34 2.3 Performance Validation 34 2.4 Conclusion 40 References 40 3 Analysis of Machine Learning Techniques for Spam Detection 43 3.1 Introduction 44 3.1.1 Ham Messages 44 3.1.2 Spam Messages 44 3.2 Types of Spam Attack 45 3.2.1 Email Phishing 45 3.2.2 Spear Phishing 45 3.2.3 Whaling 46 3.3 Spammer Methods 46 3.4 Some Prevention Methods From User End 46 3.4.1 Protect Email Addresses 46 3.4.2 Preventing Spam from Being Sent 47 3.4.3 Block Spam to be Delivered 48 3.4.4 Identify and Separate Spam After Delivery 48 3.4.4.1 Targeted Link Analysis 48 3.4.4.2 Bayesian Filters 48 3.4.5 Report Spam 48 3.5 Machine Learning Algorithms 48 3.5.1 Na̐ve Bayes (NB) 48 3.5.2 Random Forests (RF) 49 3.5.3 Support Vector Machine (SVM) 49 3.5.4 Logistic Regression (LR) 50 3.6 Methodology 51 3.6.1 Database Used 51 3.6.2 Work Flow 51 3.7 Results and Analysis 52 3.7.1 Performance Metric 52 3.7.2 Experimental Results 52 3.7.2.1 Cleaning Data by Removing Punctuations, White Spaces, and Stop Words 54 3.7.2.2 Stemming the Messages 55 3.7.2.3 Analyzing the Common Words from the Spam and Ham Messages 55 3.7.3 Analyses of Machine Learning Algorithms 55 3.7.3.1 Accuracy Score Before Stemming 55 3.7.3.2 Accuracy Score After Stemming 55 3.7.3.3 Splitting Dataset into Train and Test Data 56 3.7.3.4 Mapping Confusion Matrix 58 3.7.3.5 Accuracy 58 3.8 Conclusion and Future Work 59 References 59 4 Smart Sensor Based Prognostication of Cardiac Disease Prediction Using Machine Learning Techniques 63 4.1 Introduction 64 4.2 Literature Survey 65 4.3 Proposed Method 67 4.4 Data Collection in IoT 67 4.4.1 Fetching Data from Sensors 68 4.4.2 K-Nearest Neighbor Classifier 69 4.4.3 Random Forest Classifier 70 4.4.4 Decision Tree Classifier 70 4.4.5 Extreme Gradient Boost Classifier 71 4.5 Results and Discussions 72 4.6 Conclusion 78 4.7 Acknowledgements 78 References 78 5 Assimilate Machine Learning Algorithms in Big Data Analytics: Review 81 5.1 Introduction 82 5.2 Literature Big data Machine learning Cloud computing COMPUTERS / Database Management / Data Mining SCIENCE / Energy Pani, Subhendu Kumar 1980- (DE-588)1243682256 edt Tripathy, Somanath edt Jandieri, George edt Kundu, Sumit edt Butt, Talal Ashraf edt Erscheint auch als Druck-Ausgabe 978-87-7022-182-5 https://doi.org/10.1201/9781003337218 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Applications of machine learning in big-data analytics and cloud computing |
title | Applications of machine learning in big-data analytics and cloud computing |
title_auth | Applications of machine learning in big-data analytics and cloud computing |
title_exact_search | Applications of machine learning in big-data analytics and cloud computing |
title_exact_search_txtP | Applications of machine learning in big-data analytics and cloud computing |
title_full | Applications of machine learning in big-data analytics and cloud computing editors: Subhendu Kumar Pani, Somanath Tripathy, George Jandieri, Sumit Kundu, Talal Ashraf Butt |
title_fullStr | Applications of machine learning in big-data analytics and cloud computing editors: Subhendu Kumar Pani, Somanath Tripathy, George Jandieri, Sumit Kundu, Talal Ashraf Butt |
title_full_unstemmed | Applications of machine learning in big-data analytics and cloud computing editors: Subhendu Kumar Pani, Somanath Tripathy, George Jandieri, Sumit Kundu, Talal Ashraf Butt |
title_short | Applications of machine learning in big-data analytics and cloud computing |
title_sort | applications of machine learning in big data analytics and cloud computing |
url | https://doi.org/10.1201/9781003337218 |
work_keys_str_mv | AT panisubhendukumar applicationsofmachinelearninginbigdataanalyticsandcloudcomputing AT tripathysomanath applicationsofmachinelearninginbigdataanalyticsandcloudcomputing AT jandierigeorge applicationsofmachinelearninginbigdataanalyticsandcloudcomputing AT kundusumit applicationsofmachinelearninginbigdataanalyticsandcloudcomputing AT butttalalashraf applicationsofmachinelearninginbigdataanalyticsandcloudcomputing |