A radical approach to real analysis:
In this second edition of the MAA classic, exploration continues to be an essential component. More than 60 new exercises have been added, and the chapters on Infinite Summations, Differentiability and Continuity, and Convergence of Infinite Series have been reorganized to make it easier to identify...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Washington, DC
MAA Press, an imprint of the American Mathematical Society
[2007]
|
Ausgabe: | Second edition |
Schriftenreihe: | AMS/MAA textbooks
vol. 10 |
Schlagworte: | |
Online-Zugang: | DE-91 Volltext |
Zusammenfassung: | In this second edition of the MAA classic, exploration continues to be an essential component. More than 60 new exercises have been added, and the chapters on Infinite Summations, Differentiability and Continuity, and Convergence of Infinite Series have been reorganized to make it easier to identify the key ideas. A Radical Approach to Real Analysis is an introduction to real analysis, rooted in and informed by the historical issues that shaped its development. It can be used as a textbook, as a resource for the instructor who prefers to teach a traditional course, or as a resource for the student who has been through a traditional course yet still does not understand what real analysis is about and why it was created. The book begins with Fourier's introduction of trigonometric series and the problems they created for the mathematicians of the early 19th century. It follows Cauchy's attempts to establish a firm foundation for calculus and considers his failures as well as his successes. It culminates with Dirichlet's proof of the validity of the Fourier series expansion and explores some of the counterintuitive results Riemann and Weierstrass were led to as a result of Dirichlet's proof. Cover -- copyright page -- Preface -- Contents -- 1 Crisis in Mathematics: Fourier's Series -- 1.1 Background to the Problem -- 1.2 Difficulties with the Solution -- 2 Infinite Summations -- 2.1 The Archimedean Understanding -- 2.2 Geometric Series -- 2.3 Calculating π -- 2.4 Logarithms and the Harmonic Series -- 2.5 Taylor Series -- 2.6 Emerging Doubts -- 3 Differentiability and Continuity -- 3.1 Differentiability -- 3.2 Cauchy and the Mean Value Theorems -- 3.3 Continuity -- 3.4 Consequences of Continuity -- 3.5 Consequences of the Mean Value Theorem -- 4 The Convergence of Infinite Series -- 4.1 The Basic Tests of Convergence -- 4.2 Comparison Tests -- 4.3 The Convergence of Power Series -- 4.4 The Convergence of Fourier Series -- 5 Understanding Infinite Series -- 5.1 Groupings and Rearrangements -- 5.2 Cauchy and Continuity -- 5.3 Differentiation and Integration -- 5.4 Verifying Uniform Convergence -- 6 Return to Fourier Series -- 6.1 Dirichlet's Theorem -- 6.2 The Cauchy Integral -- 6.3 The Riemann Integral -- 6.4 Continuity without Differentiability -- 7 Epilogue -- Appendix A Explorations of the Infinite -- A.1 Wallis on π -- A.2 Bernoulli's Numbers -- A.3 Sums of Negative Powers -- A.4 The Size of n! -- Appendix B Bibliography -- Appendix C Hints to Selected Exercises -- Index -- Back cover. |
Beschreibung: | 1 Online-Ressource (xv, 322 Seiten) Illustrationen, Diagramme |
ISBN: | 9781614446231 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV049588503 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 240227s2007 |||| o||u| ||||||eng d | ||
020 | |a 9781614446231 |9 978-1-61444-623-1 | ||
024 | 7 | |a 10.1090/text/010 |2 doi | |
035 | |a (OCoLC)1424574561 | ||
035 | |a (DE-599)KEP053143396 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
084 | |a SK 420 |0 (DE-625)143238: |2 rvk | ||
084 | |a SK 400 |0 (DE-625)143237: |2 rvk | ||
084 | |a 26-01 |2 msc | ||
084 | |a 01-01 |2 msc | ||
084 | |a *26-01 |2 msc | ||
100 | 1 | |a Bressoud, David M. |d 1950- |e Verfasser |0 (DE-588)136747221 |4 aut | |
245 | 1 | 0 | |a A radical approach to real analysis |c David M. Bressoud |
250 | |a Second edition | ||
264 | 1 | |a Washington, DC |b MAA Press, an imprint of the American Mathematical Society |c [2007] | |
300 | |a 1 Online-Ressource (xv, 322 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a AMS/MAA textbooks |v vol. 10 | |
490 | 0 | |a MAA textbooks | |
520 | 3 | |a In this second edition of the MAA classic, exploration continues to be an essential component. More than 60 new exercises have been added, and the chapters on Infinite Summations, Differentiability and Continuity, and Convergence of Infinite Series have been reorganized to make it easier to identify the key ideas. A Radical Approach to Real Analysis is an introduction to real analysis, rooted in and informed by the historical issues that shaped its development. It can be used as a textbook, as a resource for the instructor who prefers to teach a traditional course, or as a resource for the student who has been through a traditional course yet still does not understand what real analysis is about and why it was created. The book begins with Fourier's introduction of trigonometric series and the problems they created for the mathematicians of the early 19th century. It follows Cauchy's attempts to establish a firm foundation for calculus and considers his failures as well as his successes. It culminates with Dirichlet's proof of the validity of the Fourier series expansion and explores some of the counterintuitive results Riemann and Weierstrass were led to as a result of Dirichlet's proof. | |
520 | 3 | |a Cover -- copyright page -- Preface -- Contents -- 1 Crisis in Mathematics: Fourier's Series -- 1.1 Background to the Problem -- 1.2 Difficulties with the Solution -- 2 Infinite Summations -- 2.1 The Archimedean Understanding -- 2.2 Geometric Series -- 2.3 Calculating π -- 2.4 Logarithms and the Harmonic Series -- 2.5 Taylor Series -- 2.6 Emerging Doubts -- 3 Differentiability and Continuity -- 3.1 Differentiability -- 3.2 Cauchy and the Mean Value Theorems -- 3.3 Continuity -- 3.4 Consequences of Continuity -- 3.5 Consequences of the Mean Value Theorem -- 4 The Convergence of Infinite Series -- 4.1 The Basic Tests of Convergence -- 4.2 Comparison Tests -- 4.3 The Convergence of Power Series -- 4.4 The Convergence of Fourier Series -- 5 Understanding Infinite Series -- 5.1 Groupings and Rearrangements -- 5.2 Cauchy and Continuity -- 5.3 Differentiation and Integration -- 5.4 Verifying Uniform Convergence -- 6 Return to Fourier Series -- 6.1 Dirichlet's Theorem -- 6.2 The Cauchy Integral -- 6.3 The Riemann Integral -- 6.4 Continuity without Differentiability -- 7 Epilogue -- Appendix A Explorations of the Infinite -- A.1 Wallis on π -- A.2 Bernoulli's Numbers -- A.3 Sums of Negative Powers -- A.4 The Size of n! -- Appendix B Bibliography -- Appendix C Hints to Selected Exercises -- Index -- Back cover. | |
650 | 0 | 7 | |a Reelle Funktion |0 (DE-588)4048918-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Analysis |0 (DE-588)4001865-9 |2 gnd |9 rswk-swf |
653 | 0 | |a Mathematical analysis | |
653 | 0 | |a Electronic books | |
689 | 0 | 0 | |a Analysis |0 (DE-588)4001865-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Reelle Funktion |0 (DE-588)4048918-8 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-88385-747-2 |
830 | 0 | |a AMS/MAA textbooks |v vol. 10 |w (DE-604)BV047275716 |9 10 | |
856 | 4 | 0 | |m X:EBC |u https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=6206948 |x Aggregator |3 Volltext |
912 | |a ZDB-138-AMSM | ||
966 | e | |u https://doi.org/10.1090/text/010 |l DE-91 |p ZDB-138-AMSM |q TUM_Einzelkauf_2024 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1805069696342425600 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Bressoud, David M. 1950- |
author_GND | (DE-588)136747221 |
author_facet | Bressoud, David M. 1950- |
author_role | aut |
author_sort | Bressoud, David M. 1950- |
author_variant | d m b dm dmb |
building | Verbundindex |
bvnumber | BV049588503 |
classification_rvk | SK 420 SK 400 |
collection | ZDB-138-AMSM |
ctrlnum | (OCoLC)1424574561 (DE-599)KEP053143396 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | Second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000 cb4500</leader><controlfield tag="001">BV049588503</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240227s2007 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781614446231</subfield><subfield code="9">978-1-61444-623-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1090/text/010</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1424574561</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP053143396</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 420</subfield><subfield code="0">(DE-625)143238:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 400</subfield><subfield code="0">(DE-625)143237:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">26-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">01-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">*26-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bressoud, David M.</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136747221</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A radical approach to real analysis</subfield><subfield code="c">David M. Bressoud</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, DC</subfield><subfield code="b">MAA Press, an imprint of the American Mathematical Society</subfield><subfield code="c">[2007]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 322 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">AMS/MAA textbooks</subfield><subfield code="v">vol. 10</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">MAA textbooks</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">In this second edition of the MAA classic, exploration continues to be an essential component. More than 60 new exercises have been added, and the chapters on Infinite Summations, Differentiability and Continuity, and Convergence of Infinite Series have been reorganized to make it easier to identify the key ideas. A Radical Approach to Real Analysis is an introduction to real analysis, rooted in and informed by the historical issues that shaped its development. It can be used as a textbook, as a resource for the instructor who prefers to teach a traditional course, or as a resource for the student who has been through a traditional course yet still does not understand what real analysis is about and why it was created. The book begins with Fourier's introduction of trigonometric series and the problems they created for the mathematicians of the early 19th century. It follows Cauchy's attempts to establish a firm foundation for calculus and considers his failures as well as his successes. It culminates with Dirichlet's proof of the validity of the Fourier series expansion and explores some of the counterintuitive results Riemann and Weierstrass were led to as a result of Dirichlet's proof.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Cover -- copyright page -- Preface -- Contents -- 1 Crisis in Mathematics: Fourier's Series -- 1.1 Background to the Problem -- 1.2 Difficulties with the Solution -- 2 Infinite Summations -- 2.1 The Archimedean Understanding -- 2.2 Geometric Series -- 2.3 Calculating π -- 2.4 Logarithms and the Harmonic Series -- 2.5 Taylor Series -- 2.6 Emerging Doubts -- 3 Differentiability and Continuity -- 3.1 Differentiability -- 3.2 Cauchy and the Mean Value Theorems -- 3.3 Continuity -- 3.4 Consequences of Continuity -- 3.5 Consequences of the Mean Value Theorem -- 4 The Convergence of Infinite Series -- 4.1 The Basic Tests of Convergence -- 4.2 Comparison Tests -- 4.3 The Convergence of Power Series -- 4.4 The Convergence of Fourier Series -- 5 Understanding Infinite Series -- 5.1 Groupings and Rearrangements -- 5.2 Cauchy and Continuity -- 5.3 Differentiation and Integration -- 5.4 Verifying Uniform Convergence -- 6 Return to Fourier Series -- 6.1 Dirichlet's Theorem -- 6.2 The Cauchy Integral -- 6.3 The Riemann Integral -- 6.4 Continuity without Differentiability -- 7 Epilogue -- Appendix A Explorations of the Infinite -- A.1 Wallis on π -- A.2 Bernoulli's Numbers -- A.3 Sums of Negative Powers -- A.4 The Size of n! -- Appendix B Bibliography -- Appendix C Hints to Selected Exercises -- Index -- Back cover.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reelle Funktion</subfield><subfield code="0">(DE-588)4048918-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Reelle Funktion</subfield><subfield code="0">(DE-588)4048918-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-88385-747-2</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">AMS/MAA textbooks</subfield><subfield code="v">vol. 10</subfield><subfield code="w">(DE-604)BV047275716</subfield><subfield code="9">10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="m">X:EBC</subfield><subfield code="u">https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=6206948</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-138-AMSM</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1090/text/010</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-138-AMSM</subfield><subfield code="q">TUM_Einzelkauf_2024</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049588503 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:33:00Z |
indexdate | 2024-07-20T04:10:08Z |
institution | BVB |
isbn | 9781614446231 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034933232 |
oclc_num | 1424574561 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 1 Online-Ressource (xv, 322 Seiten) Illustrationen, Diagramme |
psigel | ZDB-138-AMSM ZDB-138-AMSM TUM_Einzelkauf_2024 |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | MAA Press, an imprint of the American Mathematical Society |
record_format | marc |
series | AMS/MAA textbooks |
series2 | AMS/MAA textbooks MAA textbooks |
spelling | Bressoud, David M. 1950- Verfasser (DE-588)136747221 aut A radical approach to real analysis David M. Bressoud Second edition Washington, DC MAA Press, an imprint of the American Mathematical Society [2007] 1 Online-Ressource (xv, 322 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier AMS/MAA textbooks vol. 10 MAA textbooks In this second edition of the MAA classic, exploration continues to be an essential component. More than 60 new exercises have been added, and the chapters on Infinite Summations, Differentiability and Continuity, and Convergence of Infinite Series have been reorganized to make it easier to identify the key ideas. A Radical Approach to Real Analysis is an introduction to real analysis, rooted in and informed by the historical issues that shaped its development. It can be used as a textbook, as a resource for the instructor who prefers to teach a traditional course, or as a resource for the student who has been through a traditional course yet still does not understand what real analysis is about and why it was created. The book begins with Fourier's introduction of trigonometric series and the problems they created for the mathematicians of the early 19th century. It follows Cauchy's attempts to establish a firm foundation for calculus and considers his failures as well as his successes. It culminates with Dirichlet's proof of the validity of the Fourier series expansion and explores some of the counterintuitive results Riemann and Weierstrass were led to as a result of Dirichlet's proof. Cover -- copyright page -- Preface -- Contents -- 1 Crisis in Mathematics: Fourier's Series -- 1.1 Background to the Problem -- 1.2 Difficulties with the Solution -- 2 Infinite Summations -- 2.1 The Archimedean Understanding -- 2.2 Geometric Series -- 2.3 Calculating π -- 2.4 Logarithms and the Harmonic Series -- 2.5 Taylor Series -- 2.6 Emerging Doubts -- 3 Differentiability and Continuity -- 3.1 Differentiability -- 3.2 Cauchy and the Mean Value Theorems -- 3.3 Continuity -- 3.4 Consequences of Continuity -- 3.5 Consequences of the Mean Value Theorem -- 4 The Convergence of Infinite Series -- 4.1 The Basic Tests of Convergence -- 4.2 Comparison Tests -- 4.3 The Convergence of Power Series -- 4.4 The Convergence of Fourier Series -- 5 Understanding Infinite Series -- 5.1 Groupings and Rearrangements -- 5.2 Cauchy and Continuity -- 5.3 Differentiation and Integration -- 5.4 Verifying Uniform Convergence -- 6 Return to Fourier Series -- 6.1 Dirichlet's Theorem -- 6.2 The Cauchy Integral -- 6.3 The Riemann Integral -- 6.4 Continuity without Differentiability -- 7 Epilogue -- Appendix A Explorations of the Infinite -- A.1 Wallis on π -- A.2 Bernoulli's Numbers -- A.3 Sums of Negative Powers -- A.4 The Size of n! -- Appendix B Bibliography -- Appendix C Hints to Selected Exercises -- Index -- Back cover. Reelle Funktion (DE-588)4048918-8 gnd rswk-swf Analysis (DE-588)4001865-9 gnd rswk-swf Mathematical analysis Electronic books Analysis (DE-588)4001865-9 s DE-604 Reelle Funktion (DE-588)4048918-8 s Erscheint auch als Druck-Ausgabe 978-0-88385-747-2 AMS/MAA textbooks vol. 10 (DE-604)BV047275716 10 X:EBC https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=6206948 Aggregator Volltext |
spellingShingle | Bressoud, David M. 1950- A radical approach to real analysis AMS/MAA textbooks Reelle Funktion (DE-588)4048918-8 gnd Analysis (DE-588)4001865-9 gnd |
subject_GND | (DE-588)4048918-8 (DE-588)4001865-9 |
title | A radical approach to real analysis |
title_auth | A radical approach to real analysis |
title_exact_search | A radical approach to real analysis |
title_exact_search_txtP | A radical approach to real analysis |
title_full | A radical approach to real analysis David M. Bressoud |
title_fullStr | A radical approach to real analysis David M. Bressoud |
title_full_unstemmed | A radical approach to real analysis David M. Bressoud |
title_short | A radical approach to real analysis |
title_sort | a radical approach to real analysis |
topic | Reelle Funktion (DE-588)4048918-8 gnd Analysis (DE-588)4001865-9 gnd |
topic_facet | Reelle Funktion Analysis |
url | https://ebookcentral.proquest.com/lib/kxp/detail.action?docID=6206948 |
volume_link | (DE-604)BV047275716 |
work_keys_str_mv | AT bressouddavidm aradicalapproachtorealanalysis |