Data Science Fundamentals Pocket Primer:
As part of the best-selling Pocket Primer series, this book is designed to introduce the reader to the basic concepts of data science using Python 3 and other computer applications. It is intended to be a fast-paced introduction to some basic features of data analytics and also covers statistics, da...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Herndon
Mercury Learning and Information
[2021]
|
Schriftenreihe: | Pocket Primer
|
Schlagworte: | |
Online-Zugang: | DE-1046 DE-1043 DE-858 DE-859 DE-860 DE-739 URL des Erstveröffentlichers |
Zusammenfassung: | As part of the best-selling Pocket Primer series, this book is designed to introduce the reader to the basic concepts of data science using Python 3 and other computer applications. It is intended to be a fast-paced introduction to some basic features of data analytics and also covers statistics, data visualization, linear algebra, and regular expressions. The book includes numerous code samples using Python, NumPy, R, SQL, NoSQL, and Pandas. Companion files with source code and color figures are available. FEATURES:Includes a concise introduction to Python 3 and linear algebraProvides a thorough introduction to data visualization and regular expressionsCovers NumPy, Pandas, R, and SQLIntroduces probability and statistical conceptsFeatures numerous code samples throughoutCompanion files with source code and figuresThe companion files are available online by emailing the publisher with proof of purchase at info@merclearning.com |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 01. Nov 2023) |
Beschreibung: | 1 Online-Ressource (428 Seiten) |
ISBN: | 9781683927327 |
DOI: | 10.1515/9781683927327 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV049580739 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 240222s2021 xx o|||| 00||| eng d | ||
020 | |a 9781683927327 |9 978-1-68392-732-7 | ||
024 | 7 | |a 10.1515/9781683927327 |2 doi | |
035 | |a (ZDB-23-DGG)9781683927327 | ||
035 | |a (OCoLC)1394871893 | ||
035 | |a (DE-599)BVBBV049580739 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1046 |a DE-858 |a DE-859 |a DE-860 |a DE-739 | ||
082 | 0 | |a 005.7 |2 23 | |
100 | 1 | |a Campesato, Oswald |e Verfasser |4 aut | |
245 | 1 | 0 | |a Data Science Fundamentals Pocket Primer |c Oswald Campesato |
264 | 1 | |a Herndon |b Mercury Learning and Information |c [2021] | |
264 | 4 | |c © 2021 | |
300 | |a 1 Online-Ressource (428 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Pocket Primer | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 01. Nov 2023) | ||
520 | |a As part of the best-selling Pocket Primer series, this book is designed to introduce the reader to the basic concepts of data science using Python 3 and other computer applications. It is intended to be a fast-paced introduction to some basic features of data analytics and also covers statistics, data visualization, linear algebra, and regular expressions. The book includes numerous code samples using Python, NumPy, R, SQL, NoSQL, and Pandas. Companion files with source code and color figures are available. FEATURES:Includes a concise introduction to Python 3 and linear algebraProvides a thorough introduction to data visualization and regular expressionsCovers NumPy, Pandas, R, and SQLIntroduces probability and statistical conceptsFeatures numerous code samples throughoutCompanion files with source code and figuresThe companion files are available online by emailing the publisher with proof of purchase at info@merclearning.com | ||
546 | |a In English | ||
650 | 4 | |a Data | |
650 | 4 | |a Programming | |
650 | 7 | |a COMPUTERS / Programming Languages / Python |2 bisacsh | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781683927334 |
856 | 4 | 0 | |u https://doi.org/10.1515/9781683927327?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034925670 | |
966 | e | |u https://doi.org/10.1515/9781683927327?locatt=mode:legacy |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683927327?locatt=mode:legacy |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683927327?locatt=mode:legacy |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683927327?locatt=mode:legacy |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683927327?locatt=mode:legacy |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683927327?locatt=mode:legacy |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1824508242877743105 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Campesato, Oswald |
author_facet | Campesato, Oswald |
author_role | aut |
author_sort | Campesato, Oswald |
author_variant | o c oc |
building | Verbundindex |
bvnumber | BV049580739 |
collection | ZDB-23-DGG |
ctrlnum | (ZDB-23-DGG)9781683927327 (OCoLC)1394871893 (DE-599)BVBBV049580739 |
dewey-full | 005.7 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.7 |
dewey-search | 005.7 |
dewey-sort | 15.7 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.1515/9781683927327 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV049580739</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240222s2021 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781683927327</subfield><subfield code="9">978-1-68392-732-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781683927327</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781683927327</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1394871893</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049580739</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Campesato, Oswald</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data Science Fundamentals Pocket Primer</subfield><subfield code="c">Oswald Campesato</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Herndon</subfield><subfield code="b">Mercury Learning and Information</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (428 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Pocket Primer</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 01. Nov 2023)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As part of the best-selling Pocket Primer series, this book is designed to introduce the reader to the basic concepts of data science using Python 3 and other computer applications. It is intended to be a fast-paced introduction to some basic features of data analytics and also covers statistics, data visualization, linear algebra, and regular expressions. The book includes numerous code samples using Python, NumPy, R, SQL, NoSQL, and Pandas. Companion files with source code and color figures are available. FEATURES:Includes a concise introduction to Python 3 and linear algebraProvides a thorough introduction to data visualization and regular expressionsCovers NumPy, Pandas, R, and SQLIntroduces probability and statistical conceptsFeatures numerous code samples throughoutCompanion files with source code and figuresThe companion files are available online by emailing the publisher with proof of purchase at info@merclearning.com</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Programming</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Programming Languages / Python</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781683927334</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781683927327?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034925670</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683927327?locatt=mode:legacy</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683927327?locatt=mode:legacy</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683927327?locatt=mode:legacy</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683927327?locatt=mode:legacy</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683927327?locatt=mode:legacy</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683927327?locatt=mode:legacy</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049580739 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:32:02Z |
indexdate | 2025-02-19T17:37:31Z |
institution | BVB |
isbn | 9781683927327 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034925670 |
oclc_num | 1394871893 |
open_access_boolean | |
owner | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-739 |
owner_facet | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-739 |
physical | 1 Online-Ressource (428 Seiten) |
psigel | ZDB-23-DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Mercury Learning and Information |
record_format | marc |
series2 | Pocket Primer |
spelling | Campesato, Oswald Verfasser aut Data Science Fundamentals Pocket Primer Oswald Campesato Herndon Mercury Learning and Information [2021] © 2021 1 Online-Ressource (428 Seiten) txt rdacontent c rdamedia cr rdacarrier Pocket Primer Description based on online resource; title from PDF title page (publisher's Web site, viewed 01. Nov 2023) As part of the best-selling Pocket Primer series, this book is designed to introduce the reader to the basic concepts of data science using Python 3 and other computer applications. It is intended to be a fast-paced introduction to some basic features of data analytics and also covers statistics, data visualization, linear algebra, and regular expressions. The book includes numerous code samples using Python, NumPy, R, SQL, NoSQL, and Pandas. Companion files with source code and color figures are available. FEATURES:Includes a concise introduction to Python 3 and linear algebraProvides a thorough introduction to data visualization and regular expressionsCovers NumPy, Pandas, R, and SQLIntroduces probability and statistical conceptsFeatures numerous code samples throughoutCompanion files with source code and figuresThe companion files are available online by emailing the publisher with proof of purchase at info@merclearning.com In English Data Programming COMPUTERS / Programming Languages / Python bisacsh Erscheint auch als Druck-Ausgabe 9781683927334 https://doi.org/10.1515/9781683927327?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Campesato, Oswald Data Science Fundamentals Pocket Primer Data Programming COMPUTERS / Programming Languages / Python bisacsh |
title | Data Science Fundamentals Pocket Primer |
title_auth | Data Science Fundamentals Pocket Primer |
title_exact_search | Data Science Fundamentals Pocket Primer |
title_exact_search_txtP | Data Science Fundamentals Pocket Primer |
title_full | Data Science Fundamentals Pocket Primer Oswald Campesato |
title_fullStr | Data Science Fundamentals Pocket Primer Oswald Campesato |
title_full_unstemmed | Data Science Fundamentals Pocket Primer Oswald Campesato |
title_short | Data Science Fundamentals Pocket Primer |
title_sort | data science fundamentals pocket primer |
topic | Data Programming COMPUTERS / Programming Languages / Python bisacsh |
topic_facet | Data Programming COMPUTERS / Programming Languages / Python |
url | https://doi.org/10.1515/9781683927327?locatt=mode:legacy |
work_keys_str_mv | AT campesatooswald datasciencefundamentalspocketprimer |