TensorFlow 2 Pocket Primer:
As part of the best-selling Pocket Primer series, this book is designed to introduce beginners to basic machine learning algorithms using TensorFlow 2. It is intended to be a fast-paced introduction to various "core" features of TensorFlow, with code samples that cover machine learning and...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Herndon
Mercury Learning and Information
[2019]
|
Schriftenreihe: | Pocket Primer
|
Schlagworte: | |
Online-Zugang: | DE-1046 DE-1043 DE-858 DE-859 DE-860 DE-739 Volltext |
Zusammenfassung: | As part of the best-selling Pocket Primer series, this book is designed to introduce beginners to basic machine learning algorithms using TensorFlow 2. It is intended to be a fast-paced introduction to various "core" features of TensorFlow, with code samples that cover machine learning and TensorFlow basics. A comprehensive appendix contains some Keras-based code samples and the underpinnings of MLPs, CNNs, RNNs, and LSTMs. The material in the chapters illustrates how to solve a variety of tasks after which you can do further reading to deepen your knowledge. Companion files with all of the code samples are available for downloading from the publisher by emailing proof of purchase to info@merclearning.com. Features: Uses Python for code samplesCovers TensorFlow 2 APIs and DatasetsIncludes a comprehensive appendix that covers Keras and advanced topics such as NLPs, MLPs, RNNs, LSTMsFeatures the companion files with all of the source code examples and figures (download from the publisher) |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 01. Nov 2023) |
Beschreibung: | 1 Online-Ressource (252 Seiten) |
ISBN: | 9781683924616 |
DOI: | 10.1515/9781683924616 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV049580691 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 240222s2019 xx o|||| 00||| eng d | ||
020 | |a 9781683924616 |9 978-1-68392-461-6 | ||
024 | 7 | |a 10.1515/9781683924616 |2 doi | |
035 | |a (ZDB-23-DGG)9781683924616 | ||
035 | |a (OCoLC)1340455418 | ||
035 | |a (DE-599)BVBBV049580691 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1046 |a DE-858 |a DE-859 |a DE-860 |a DE-739 | ||
082 | 0 | |a 006.31 |2 23 | |
100 | 1 | |a Campesato, Oswald |e Verfasser |4 aut | |
245 | 1 | 0 | |a TensorFlow 2 Pocket Primer |c Oswald Campesato |
264 | 1 | |a Herndon |b Mercury Learning and Information |c [2019] | |
264 | 4 | |c © 2019 | |
300 | |a 1 Online-Ressource (252 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Pocket Primer | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 01. Nov 2023) | ||
520 | |a As part of the best-selling Pocket Primer series, this book is designed to introduce beginners to basic machine learning algorithms using TensorFlow 2. It is intended to be a fast-paced introduction to various "core" features of TensorFlow, with code samples that cover machine learning and TensorFlow basics. A comprehensive appendix contains some Keras-based code samples and the underpinnings of MLPs, CNNs, RNNs, and LSTMs. The material in the chapters illustrates how to solve a variety of tasks after which you can do further reading to deepen your knowledge. Companion files with all of the code samples are available for downloading from the publisher by emailing proof of purchase to info@merclearning.com. Features: Uses Python for code samplesCovers TensorFlow 2 APIs and DatasetsIncludes a comprehensive appendix that covers Keras and advanced topics such as NLPs, MLPs, RNNs, LSTMsFeatures the companion files with all of the source code examples and figures (download from the publisher) | ||
546 | |a In English | ||
650 | 4 | |a Programming | |
650 | 7 | |a COMPUTERS / Programming Languages / Python |2 bisacsh | |
650 | 4 | |a Application software |x Development | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Machine learning | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781683924609 |
856 | 4 | 0 | |u https://doi.org/10.1515/9781683924616?locatt=mode:legacy |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034925623 | |
966 | e | |u https://doi.org/10.1515/9781683924616?locatt=mode:legacy |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683924616?locatt=mode:legacy |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683924616?locatt=mode:legacy |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683924616?locatt=mode:legacy |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683924616?locatt=mode:legacy |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9781683924616?locatt=mode:legacy |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1824508242728845312 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Campesato, Oswald |
author_facet | Campesato, Oswald |
author_role | aut |
author_sort | Campesato, Oswald |
author_variant | o c oc |
building | Verbundindex |
bvnumber | BV049580691 |
collection | ZDB-23-DGG |
ctrlnum | (ZDB-23-DGG)9781683924616 (OCoLC)1340455418 (DE-599)BVBBV049580691 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.1515/9781683924616 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV049580691</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240222s2019 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781683924616</subfield><subfield code="9">978-1-68392-461-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781683924616</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9781683924616</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1340455418</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049580691</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Campesato, Oswald</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">TensorFlow 2 Pocket Primer</subfield><subfield code="c">Oswald Campesato</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Herndon</subfield><subfield code="b">Mercury Learning and Information</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2019</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (252 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Pocket Primer</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 01. Nov 2023)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As part of the best-selling Pocket Primer series, this book is designed to introduce beginners to basic machine learning algorithms using TensorFlow 2. It is intended to be a fast-paced introduction to various "core" features of TensorFlow, with code samples that cover machine learning and TensorFlow basics. A comprehensive appendix contains some Keras-based code samples and the underpinnings of MLPs, CNNs, RNNs, and LSTMs. The material in the chapters illustrates how to solve a variety of tasks after which you can do further reading to deepen your knowledge. Companion files with all of the code samples are available for downloading from the publisher by emailing proof of purchase to info@merclearning.com. Features: Uses Python for code samplesCovers TensorFlow 2 APIs and DatasetsIncludes a comprehensive appendix that covers Keras and advanced topics such as NLPs, MLPs, RNNs, LSTMsFeatures the companion files with all of the source code examples and figures (download from the publisher)</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Programming</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Programming Languages / Python</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Application software</subfield><subfield code="x">Development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781683924609</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781683924616?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034925623</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683924616?locatt=mode:legacy</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683924616?locatt=mode:legacy</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683924616?locatt=mode:legacy</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683924616?locatt=mode:legacy</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683924616?locatt=mode:legacy</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781683924616?locatt=mode:legacy</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049580691 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:32:02Z |
indexdate | 2025-02-19T17:37:31Z |
institution | BVB |
isbn | 9781683924616 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034925623 |
oclc_num | 1340455418 |
open_access_boolean | |
owner | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-739 |
owner_facet | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-739 |
physical | 1 Online-Ressource (252 Seiten) |
psigel | ZDB-23-DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Mercury Learning and Information |
record_format | marc |
series2 | Pocket Primer |
spelling | Campesato, Oswald Verfasser aut TensorFlow 2 Pocket Primer Oswald Campesato Herndon Mercury Learning and Information [2019] © 2019 1 Online-Ressource (252 Seiten) txt rdacontent c rdamedia cr rdacarrier Pocket Primer Description based on online resource; title from PDF title page (publisher's Web site, viewed 01. Nov 2023) As part of the best-selling Pocket Primer series, this book is designed to introduce beginners to basic machine learning algorithms using TensorFlow 2. It is intended to be a fast-paced introduction to various "core" features of TensorFlow, with code samples that cover machine learning and TensorFlow basics. A comprehensive appendix contains some Keras-based code samples and the underpinnings of MLPs, CNNs, RNNs, and LSTMs. The material in the chapters illustrates how to solve a variety of tasks after which you can do further reading to deepen your knowledge. Companion files with all of the code samples are available for downloading from the publisher by emailing proof of purchase to info@merclearning.com. Features: Uses Python for code samplesCovers TensorFlow 2 APIs and DatasetsIncludes a comprehensive appendix that covers Keras and advanced topics such as NLPs, MLPs, RNNs, LSTMsFeatures the companion files with all of the source code examples and figures (download from the publisher) In English Programming COMPUTERS / Programming Languages / Python bisacsh Application software Development Artificial intelligence Machine learning Erscheint auch als Druck-Ausgabe 9781683924609 https://doi.org/10.1515/9781683924616?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Campesato, Oswald TensorFlow 2 Pocket Primer Programming COMPUTERS / Programming Languages / Python bisacsh Application software Development Artificial intelligence Machine learning |
title | TensorFlow 2 Pocket Primer |
title_auth | TensorFlow 2 Pocket Primer |
title_exact_search | TensorFlow 2 Pocket Primer |
title_exact_search_txtP | TensorFlow 2 Pocket Primer |
title_full | TensorFlow 2 Pocket Primer Oswald Campesato |
title_fullStr | TensorFlow 2 Pocket Primer Oswald Campesato |
title_full_unstemmed | TensorFlow 2 Pocket Primer Oswald Campesato |
title_short | TensorFlow 2 Pocket Primer |
title_sort | tensorflow 2 pocket primer |
topic | Programming COMPUTERS / Programming Languages / Python bisacsh Application software Development Artificial intelligence Machine learning |
topic_facet | Programming COMPUTERS / Programming Languages / Python Application software Development Artificial intelligence Machine learning |
url | https://doi.org/10.1515/9781683924616?locatt=mode:legacy |
work_keys_str_mv | AT campesatooswald tensorflow2pocketprimer |