Alkaline anion exchange membranes for fuel cells: from tailored materials to novel applications
Gespeichert in:
Weitere Verfasser: | , , , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
[2024]
|
Schlagworte: | |
Online-Zugang: | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-35039-1/ Inhaltsverzeichnis |
Beschreibung: | xv, 432 Seiten Illustrationen 24.4 cm x 17 cm |
ISBN: | 9783527350391 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV049568029 | ||
003 | DE-604 | ||
005 | 20240429 | ||
007 | t| | ||
008 | 240213s2024 gw a||| |||| 00||| eng d | ||
015 | |a 23,N44 |2 dnb | ||
016 | 7 | |a 1307769195 |2 DE-101 | |
020 | |a 9783527350391 |c : circa EUR 159.00 (DE) (freier Preis), circa EUR 163.50 (AT) (freier Preis) |9 978-3-527-35039-1 | ||
024 | 3 | |a 9783527350391 | |
028 | 5 | 2 | |a Bestellnummer: 1135039 000 |
035 | |a (OCoLC)1407050564 | ||
035 | |a (DE-599)DNB1307769195 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-29T |a DE-703 |a DE-11 | ||
084 | |8 1\p |a 540 |2 23sdnb | ||
245 | 1 | 0 | |a Alkaline anion exchange membranes for fuel cells |b from tailored materials to novel applications |c edited by Jince Thomas, Alex Schechter, Flavio Grynszpan, Bejoy Francis, and Sabu Thomas |
264 | 1 | |a Weinheim |b Wiley-VCH |c [2024] | |
300 | |a xv, 432 Seiten |b Illustrationen |c 24.4 cm x 17 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Membranionenaustauscher |0 (DE-588)4137317-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Brennstoffzelle |0 (DE-588)4008195-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Polyelektrolyt |0 (DE-588)4175165-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Anion |0 (DE-588)4130938-8 |2 gnd |9 rswk-swf |
653 | |a 10: Verstehen | ||
653 | |a Batterien u. Brennstoffzellen | ||
653 | |a Batteries & Fuel Cells | ||
653 | |a Brennstoffzelle | ||
653 | |a CHA1: Batterien u. Brennstoffzellen | ||
653 | |a Chemie | ||
653 | |a Chemistry | ||
653 | |a EG32: Wasserstoff, Batterien u. Brennstoffzellen | ||
653 | |a Energie | ||
653 | |a Energy | ||
653 | |a Hydrogen, Batteries & Fuel Cells | ||
653 | |a MSL0: Materialien f. Energiesysteme | ||
653 | |a Materialien f. Energiesysteme | ||
653 | |a Materials Science | ||
653 | |a Materials for Energy Systems | ||
653 | |a Materialwissenschaften | ||
653 | |a Membran | ||
653 | |a Wasserstoff, Batterien u. Brennstoffzellen | ||
689 | 0 | 0 | |a Brennstoffzelle |0 (DE-588)4008195-3 |D s |
689 | 0 | 1 | |a Membranionenaustauscher |0 (DE-588)4137317-0 |D s |
689 | 0 | 2 | |a Anion |0 (DE-588)4130938-8 |D s |
689 | 0 | 3 | |a Polyelektrolyt |0 (DE-588)4175165-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Thomas, Jince |4 edt | |
700 | 1 | |a Schechter, Alex |4 edt | |
700 | 1 | |a Grynszpan, Flavio |4 edt | |
700 | 1 | |a Francis, Bejoy |4 edt | |
700 | 1 | |a Thomas, Sabu |d 1960- |0 (DE-588)1021317551 |4 edt | |
710 | 2 | |a Wiley-VCH |0 (DE-588)16179388-5 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-527-83760-1 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-527-83759-5 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, oBook |z 978-3-527-83758-8 |
856 | 4 | 2 | |m X:MVB |u http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-35039-1/ |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034913284&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a vlb |d 20231029 |q DE-101 |u https://d-nb.info/provenance/plan#vlb | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034913284 |
Datensatz im Suchindex
_version_ | 1821501334650617856 |
---|---|
adam_text |
V
CONTENTS
PREFACE
XIII
1
AN
INTRODUCTION
TO
POLYMERIC
ELECTROLYTE
ALKALINE
ANION
EXCHANGE
MEMBRANES
1
JINCE
THOMAS,
MINU
ELIZABETH
THOMAS,
BEJOY
FRANCIS,
AND
SABU
THOMAS
1.1
INTRODUCTION
1
1.2
DIFFERENT
TYPES
OF
ELECTROLYTES
2
1.3
WHY
POLYMER
ELECTROLYTES
ARE
IMPORTANT?
3
1.4
ANION
EXCHANGE
MEMBRANE
(AEM)
5
1.4.1
FUNDAMENTAL
CONCEPTS
OF
ANION
EXCHANGE
MEMBRANES
AS
POLYMER
ELECTROLYTES
5
1.4.2
CLASSIFICATION
OF
AEM
7
1.4.3
PROS
AND
CONS
OF
AEM
8
1.4.4
APPLICATION
OF
AEM
9
1.5
AEMSIN
FUEL
CELLS
10
1.6
CONCLUSION
AND
OUTLOOK
11
2
HISTORICAL
AND
RECENT
DEVELOPMENTS
IN
ANION
EXCHANGE
MEMBRANES
(AEM)
15
PRIYA
GOEL,
PRIYABRATA
MANDAL,
SUJAY
CHATTOPADHYAY,
AND
VINOD
K.
SHAHI
2.1
INTRODUCTION
15
2.2
FUEL
CELL:
CONVENTIONAL
VERSUS
MODERN
APPROACH
16
2.3
ROLE
OF
AEM
IN
FUEL
CELL
TECHNOLOGY
18
2.4
PREPARATION
OF
AEMS
20
2.5
CHALLENGES
IN
EXISTING
AEMS
21
2.6
RECENT
ADVANCEMENT
22
2.7
MAJOR
CHALLENGES
23
2.8
COMMERCIALLY
AVAILABLE
AEMS
28
2.9
CURRENT
SCENARIO
AND
FUTURE
MARKET
29
2.10
SUMMARY
AND
CONCLUDING
REMARKS
30
VI
CONTENTS
3
FABRICATION
PROCESSES
AND
CHARACTERIZATION
PROCEDURES
OF
ANION
EXCHANGE
MEMBRANES
37
GRACIELA
C.
ABUIN
AND
ROXANA
E.
COPPOLA
3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.4
INTRODUCTION
37
FABRICATION
PROCESSES
OF
ANION
EXCHANGE
MEMBRANES
39
AEM
OF
CATIONIC
CHARGED
POLYMERS
39
AEMS
OF
ION-SOLVATING
POLYMERS
41
AEMS
WITH
NANOFIBERS
42
HYBRID
AEMS
43
RECENT
DEVELOPMENTS
IN
AEMS
44
CHARACTERIZATION
PROCEDURES
OF
AEMS
46
IONIC
CONDUCTIVITY
52
IEC,
SWELLING
RATIO,
AND
WATER
CONTENT
53
MECHANICAL
AND
THERMAL
PROPERTIES
54
CHEMICAL
STABILITY
55
CHEMICAL
COMPOSITION
AND
MORPHOLOGICAL
CHARACTERIZATION
55
OTHER
CHARACTERIZATIONS
57
CONCLUSIONS
57
4
TYPES
OF
POLYMERIC
ELECTROLYTE
ANION
EXCHANGE
MEMBRANES:
HETEROGENEOUS
AND
GRAFTED
MEMBRANES,
INTERPENETRATING
POLYMER
NETWORKS
AND
HOMOGENEOUS
MEMBRANES
67
LIANG
ZHU
4.1
4.1.1
4.1.2
4.2
4.2.1
4.2.2
4.2.3
4.3
4.3.1
HETEROGENOUS
ANION
EXCHANGE
MEMBRANES
67
ION-SOLVATING
POLYMERS
67
HYBRID
MEMBRANES
67
GRAFTED
ANION
EXCHANGE
MEMBRANES
70
RADIATION-GRAFTED
MEMBRANES
70
SIDE
CHAIN
GRAFTED
MEMBRANES
72
LONG-SIDE-CHAIN
GRAFTED
MEMBRANES
74
INTERPENETRATING
ANION
EXCHANGE
MEMBRANES
75
ANION
EXCHANGE
MEMBRANES
BASED
ON
INTERPENETRATING
POLYMER
NETWORKS
(IPN)
76
4.3.2
ANION
EXCHANGE
MEMBRANES
BASED
ON
SEMI-INTERPENETRATING
POLYMER
NETWORKS
(SEMI-IPN)
77
4.4
4.4.1
4.4.2
4.4.3
HOMOGENOUS
MEMBRANES
78
HOMOGENOUS
MEMBRANES
BASED
ON
POLY(ARYLENE
ETHER)S
79
HOMOGENOUS
MEMBRANES
BASED
ON
POLY(STYRENE)S
82
HOMOGENOUS MEMBRANES
BASED
ON
POLY(2,6-DIMETHYL-L,
4-PHENYLENE
OXIDE)
82
4.4.4
4.4.5
4.4.6
4.5
FLUORENE-CONTAINING
HOMOGENOUS
MEMBRANES
86
HOMOGENOUS MEMBRANES
BASED
ON
POLYOLEFINS
86
OTHER
KINDS
OF
HOMOGENOUS
MEMBRANES
88
CONCLUSIONS
90
CONTENTS
|
VII
5
PROTON
EXCHANGE
MEMBRANES
VERSUS
ANION
EXCHANGE
MEMBRANES
97
MARILYN
M.
XAVIER
AND
SURESH
MATHEW
5.1
INTRODUCTION
97
5.2
PROTON
EXCHANGE
MEMBRANE
(PEM)
98
5.2.1
CLASSIFICATION
OF
PEM
MEMBRANES
BASED
ON
THE
MATERIALS
OF
SYNTHESIS
99
5.2.1.1
PERFLUORINATED
IONOMERIC
MEMBRANES
99
5.2.1.2
PARTIALLY
FLUORINATED
HYDROCARBON MEMBRANES
100
5.2.1.3
NON-FLUORINATED
HYDROCARBON MEMBRANES
101
5.2.1.4
ACID-BASE
COMPLEXES
101
5.2.2
PREPARATION
METHODS
OF
PEM
102
5.2.3
PROTON
TRANSPORT
MECHANISM IN
PEM
103
5.2.4
CURRENT
STATE
OF
ART
OF
PEM
103
5.3
COMPARISON
WITH
AEM
105
5.3.1
MATERIALS
USED
FOR
PREPARATIONS
105
5.3.2
INVESTIGATIVE
METHODS
AND
MEASUREMENT
FOR
ION-EXCHANGE
MEMBRANES
106
5.3.2.1
IONIC
CONDUCTIVITY
106
5.3.2.2
WATER
ABSORPTION OR
SWELLING
INDEX
107
5.3.2.3
ION-EXCHANGE
CAPACITY
(IEC)
OF
THE
MEMBRANE
107
5.3.2.4
THERMAL
STABILITY
AND
MECHANICAL
STRENGTH
108
5.3.2.5
DURABILITY
OF
THE
MEMBRANES
109
5.3.3
WATER
MANAGEMENT
109
5.3.4
TRANSPORT
MECHANISM
110
5.3.5
CATALYST
USED
IN
PEMFC
AND
AEMFC
111
5.3.6
MEA
FABRICATION
112
5.3.7
FUELS
USED
IN
FUEL
CELLS
113
5.3.8
FUEL
CELL
EFFICIENCY
115
5.4
CONCLUSION
115
6
TRANSPORT
AND
CONDUCTIVE
MECHANISMS
IN
ANION
EXCHANGE
MEMBRANES
125
RAMATO
A.
TUFA,
MISGINA
T.
TSEHAYE,
WENJUAN
ZHANG,
MARCO
AQUINO,
SERGIO
SANTORO,
AND
EFREM
CURCIO
6.1
INTRODUCTION
125
6.2
TRANSPORT
MECHANISMS
OF
HYDROXIDE
ION
IN
AEMS
126
6.3
AEM
STRUCTURE-TRANSPORT
EFFICIENCY
RELATIONSHIPS
130
6.4
ION
CONDUCTIVITY
MEASUREMENT
131
6.5
CARBONATION
PROCESS
IN
AEMS
133
6.5.1
ELUCIDATING
THE
DYNAMICS
OF
CARBONATION
133
6.5.2
IMPACT
OF
CARBONATION
ON
AEM
AND
AEMFC
133
6.5.3
STRATEGIES
TO
AVOID
CARBONATION
OF
OH
-
IONS
134
6.6
CONCLUSION
AND
OUTLOOK
137
VIII
CONTENTS
7
ANION
EXCHANGE
MEMBRANES
BASED
ON
QUATERNARY
AMMONIUM
CATIONS
AND
MODIFIED
QUATERNARY
AMMONIUM
CATIONS
143
VIJAYALEKSHMI
VIJAYAKUMAR
AND
SANG
YONG
NAM
7.1
7.1.1
7.2
INTRODUCTION
143
BACKGROUND
OF
AEMFC
INVENTION
144
QUATERNARY
AMMONIUM
(QA)-BASED
AEMS
-
RECENT
DEVELOPMENTS
AND
PERFORMANCES
145
7.3
7.4
OTHER
FACTORS
AFFECTING
PERFORMANCE
OF
FUEL
CELLS
158
SUMMARY
AND
PERSPECTIVES
159
8
GUANIDINIUM
CATIONS
AND
THEIR
DERIVATIVES-BASED
ANION
EXCHANGE
MEMBRANES
167
JIFU
ZHENG,
BOXIN
XUE,
AND
SUOBO
ZHANG
8.1
8.2
8.3
INTRODUCTION
167
GENERAL
SYNTHETIC
METHOD
OF
VARIOUS
GUANIDINIUMS
168
DEGRADATION MECHANISM
AND
ALKALINE
STABILITY
OF
GUANIDINIUM
CATIONS
169
8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.5
PREPARATION
OF
GUANIDINIUM
AND
THEIR
DERIVATIVE-BASED
AEMS
176
BENZYL-GUANIDINIUM
AEMS
176
ALKYL-GUANIDINIUM
AEMS
179
ARYL-GUANIDINIUM
AEMS
180
OTHER
GUANIDINIUM-BASED
AEMS
183
PROSPECT
186
9
ANION
EXCHANGE
MEMBRANES
BASED
ON
IMIDAZOLIUM
AND
TRIAZOLIUM
CATIONS
189
DO-HYEONG
KIM,
VIJAYALEKSHMI
VIJAYAKUMAR,
AND
SANG
YONG
NAM
9.1
9.2
9.2.1
9.2.2
9.3
9.4
INTRODUCTION
189
AEMS
BASED
ON
IMIDAZOLIUM
CATIONS
190
AEMS
BASED
ON
IMIDAZOLIUM-TYPE
IONIC
LIQUIDS
191
IMIDAZOLE
CONTAINING
POLYMERS
AND
COMPOSITES
194
AEM
BASED
ON
TRIAZOLIUM
CATIONS
203
SUMMARY
AND
FUTURE
PERSPECTIVES
204
10
RADIATION-GRAFTED
AND
CROSS-LINKED
POLYMERS-BASED
ANION
EXCHANGE
MEMBRANES
211
ANA
LAURA
G.
BIONCOLLI,
BIANCA
P.
SILVA
SANTOS,
AND
ELISABETE
I.
SANTIAGO
10.1
10.2
10.3
10.3.1
10.3.2
10.3.3
10.3.4
HISTORIC
OVERVIEW
211
SOURCES
OF
RADIATION
213
TYPES
OF
RADIATION-INDUCED
GRAFTING
214
ABSORBED
DOSE
218
DOSE
RATE
218
ATMOSPHERE
DURING
IRRADIATION
218
TEMPERATURE
DURING
IRRADIATION
219
CONTENTS
IX
10.4
BASE
POLYMER
220
10.5
GRAFTING
SOLUTION
221
10.6
PHYSICOCHEMICAL
PROPERTIES
OF
RG-AEMS
223
10.7
CROSS-LINKING
IN
AEMS
224
10.7.1
PHYSICAL
CROSS-LINKING
225
10.7.2
CHEMICAL
CROSS-LINKING
226
10.7.2.1
CROSS-LINKING
WITH
DIAMINE
AGENTS
226
10.7.2.2
CHEMICAL
CROSS-LINKING
REACTION
WITH
OTHER
AGENTS
228
10.7.2.3
OTHER
METHODS OF
PRODUCING
CROSS-LINKED
MEMBRANES
230
10.8
CONCLUSIONS
231
11
DEGRADATION
MECHANISMS
OF
ANION
EXCHANGE
MEMBRANES
DUE
TO
ALKALI
HYDROLYSIS
AND
RADICAL
OXIDATIVE
SPECIES
241
JEET
SHARMA
AND
VAIBHAV
KULSHRESTHA
11.1
INTRODUCTION
241
11.2
NECESSITY
TO
INVESTIGATE
THE
DEGRADATION
MECHANISM
IN
AEMS
242
11.3
STRUCTURE
AND
DEGRADATION
MECHANISM
OF
TAILORED
ANION
EXCHANGE
GROUPS
AND
POLYMERS
243
11.3.1
ALKALINE
HYDROLYSIS
OF
CATIONIC
HEAD
GROUPS
244
11.3.2
ALKALINE
HYDROLYSIS
OF
NOVEL
METALLOCENIUM
BASED
AEMS
263
11.3.3
ALKALINE
HYDROLYSIS
OF
POLYMERS
266
11.3.3.1
DEGRADATION
MECHANISM IN
POLY(ARYLENE
ETHERS)
(PAES)
267
11.3.3.2
DEGRADATION
MECHANISM
IN
FLUORINATED
POLYMER
269
11.3.3.3
DEGRADATION
MECHANISM
IN
POLY(BENZIMIDAZOLE)
BASED
POLYMERS
270
11.3.3.4
DEGRADATION
MECHANISM
IN
POLY(ALKYL)
AND
POLY(ARENE)
BASED
POLYMERS
272
11.3.4
FREE
RADICAL
OXIDATIVE
DEGRADATION
OF
AEM
274
11.4
PROSPECTS
AND
OUTLOOK
275
11.5
CONCLUSION
276
12
-
COMPUTATIONAL
APPROACHES
TO
ALKALINE
ANION
EXCHANGE
MEMBRANES
285
MINU
ELIZABETH
THOMAS
12.1
INTRODUCTION
285
12.2
WHY
COMPUTATIONAL
STUDIES
ARE
IMPORTANT
IN
ANION
EXCHANGE
MEMBRANES?
286
12.3
TOOLS
OF
IN
SILICO
APPROACHES
IN
ANION
EXCHANGE
MEMBRANES
287
12.3.1
ELECTRONIC
STRUCTURE
METHODS
IN
ANION
EXCHANGE
MEMBRANES
288
12.3.1.1
ANALYSIS
ON
HOMO-LUMO
ENERGIES
AND
MULLIKEN
CHARGES
289
12.3.1.2
ANALYSIS
ON
ESP
292
12.3.1.3
ANALYSIS
ON
CHEMICAL
STRUCTURE
AND
BONDING
NATURE
294
12.3.1.4
ANALYSIS
ON
DEGRADATION
PATHWAYS
295
12.3.2
MOLECULAR
DYNAMICS
IN
ANION
EXCHANGE
MEMBRANES
297
12.3.3
CONTINUUM
MODELING
AND
SIMULATION
IN
ANION
EXCHANGE
MEMBRANES
300
CONTENTS
12.3.4
MONTE
CARLO
SIMULATIONS
IN
ANION
EXCHANGE
MEMBRANES
301
12.3.5
MACHINE
LEARNING
IN
ANION
EXCHANGE
MEMBRANES
301
12.4
CHALLENGES
AND
OUTLOOK
303
12.5
CONCLUSION
304
13
AN
OVERVIEW
OF
COMMERCIAL AND
NON-COMMERCIAL
ANION
EXCHANGE
MEMBRANES
309
YANG
ZHANG,
FAN
ZHANG,
LIANG
WU,
XIAOLIN
GE,
AND
TONGWEN
XU
13.1
INTRODUCTION
309
13.1.1
CHARACTERISTICS
AND
EXISTING
PROBLEMS
OF
COMMERCIAL
ALKALINE
ANION
EXCHANGE
MEMBRANES
310
13.1.1.1
FUMATECH:
FUMASEP
310
13.1.1.2
TOKUYAMA:
A201
310
13.1.1.3
LONOMR:
AEMION
311
13.1.1.4
DIOXIDE
MATERIALS:
SUSTAINION
311
13.1.1.5
ORION
POLYMER:
ORION
TM1
312
13.1.1.6
XERGY:
XION-DAPPION,
XION-DURION,
XION-PENTION
312
13.1.1.7
VERSOGEN:
PIPERLON
313
13.1.1.8
MEMBRANES
INTERNATIONAL
INC.:
AMI
7001
314
13.1.1.9
ASAHI
GLASS:
SELEMION
AMV
314
13.1.2
CHARACTERISTICS
AND
EXISTING
PROBLEMS
OF
NON-COMMERCIAL
ALKALINE
ANION
EXCHANGE
MEMBRANE
314
13.1.3
STRATEGIES
TO
IMPROVE
THE
PROPERTIES
OF
AEMS
317
13.1.3.1
THE
REGULATION
OF
MICROPHASE
MORPHOLOGIES
317
13.1.3.2
CONSTRUCTING
FREE
VOLUMES
320
13.1.3.3
THE
INTRODUCTION
OF
CROSS-LINKING
STRUCTURES
322
13.1.3.4
OTHER
PHYSICAL
METHODS
324
13.1.3.5
THE
DEVELOPMENT
OF
NOVEL
CATIONIC
FUNCTIONAL
GROUPS
AND
ARYL
ETHER-FREE
MAIN
CHAINS
WITH
HIGH
STABILITY
329
13.2
SUMMARY
AND
OUTLOOKS
334
14
MEMBRANE
ELECTRODE
ASSEMBLY
PREPARATION
FOR
ANION
EXCHANGE
MEMBRANE
FUEL
CELL
(AEMFC):
SELECTION
OF
IONOMERS
AND
HOW
TO
AVOID
CO2
POISONING
341
WEIHONG
YANG,
QIUYU
ZHANG,
AND
YI
YAN
14.1
THE
PREPARATION
OF
MEMBRANE
ELECTRODE
ASSEMBLY
341
14.2
SELECTION
OF
IONOMERS
344
14.2.1
COMMERCIAL
IONOMERS
345
14.2.2
CUSTOM-MADE
IONOMERS
346
14.3
EFFECT
OF
CO2
ON
AEMFCS
348
14.3.1
EFFECT
OF
CO2
ON
EX
SITU
MEASURED
CONDUCTIVITY
348
14.3.2
EFFECT
OF
CO2
ON
ELECTROCHEMICAL
REACTIONS
ON
THE
ELECTRODES
350
14.3.3
EFFECT
OF
CO2
ON FUEL
CELL
PERFORMANCE
350
14.4
STRATEGIES
TO
AVOID
CO2
POISONING
351
CONTENTS
XI
14.4.1
14.4.2
14.4.3
14.5
14.5.1
14.5.2
14.5.3
14.6
REDUCING
HCO3/CO32
CONCENTRATION
THROUGH
SELF-PURGING
351
INCREASING
THE
CURRENT
DENSITY
TO
IMPROVE
THE
OUTLET
OF
CO2
352
FILTERED
THE
FEEDING
AIR
353
THE
IMPROVEMENT
OF
AEMFC
OUTPUT
353
ELECTRODE
OPTIMIZATION
353
CATALYST
OPTIMIZATION
354
OPTIMIZATION
OF
OPERATION
CONDITIONS
354
CONCLUSIONS
355
15
APPLICATIONS
OF
ANION
EXCHANGE
MEMBRANES
EXCLUDING
FUEL
CELLS
361
XIUQIN
WANG
AND
ROB
G.H.
LAMMERTINK
15.1
15.1.1
15.1.2
15.1.3
15.2
15.3
15.3.1
15.3.2
15.3.3
15.4
15.4.1
15.4.2
15.4.3
15.5
15.5.1
15.5.2
15.5.3
15.6
15.6.1
15.6.2
15.6.3
15.7
15.7.1
15.7.2
15.7.3
15.8
15.8.1
15.8.2
15.8.3
15.9
15.10
AEMS
IN
ALKALINE
WATER
ELECTROLYSIS
361
WORKING
PRINCIPLE
362
RESEARCH
PROGRESS
OF
AEMS
FOR
AEMWE
363
SUMMARY
AND
FUTURE
PERSPECTIVES
365
AEMS
IN
CO2
ELECTROLYSIS
366
AEMS
IN
REDOX
FLOW
BATTERIES
367
WORKING
PRINCIPLE
368
RESEARCH
PROGRESS
OF
AEMS
FOR
VRFBS
369
SUMMARY
AND
FUTURE
PERSPECTIVES
371
AEMS
IN
ALKALI
METAL-AIR
BATTERIES
371
WORKING
PRINCIPLE
372
RESEARCH
PROGRESS
OF
AEMS
FOR
RECHARGEABLE
ZABS
372
SUMMARY
AND
FUTURE
PERSPECTIVES
373
AEMS
IN
REVERSE
ELECTRODIALYSIS
374
WORKING
PRINCIPLE
374
RESEARCH
PROGRESS
OF
AEMS
FOR
RED
375
SUMMARY
AND
FUTURE
PERSPECTIVES
376
AEMS
IN
ELECTRODIALYSIS
376
WORKING
PRINCIPLE
376
RESEARCH
PROGRESS
OF
AEMS
FOR
ED
377
SUMMARY
AND
FUTURE
PERSPECTIVES
378
AEMS
IN
DIFFUSION
DIALYSIS
378
WORKING
PRINCIPLE
379
RESEARCH
PROGRESS
OF
AEMS
FOR
DD
379
SUMMARY
AND
FUTURE
PERSPECTIVES
380
AEMS
IN
MICROBIAL
FUEL
CELLS
380
WORKING
PRINCIPLE
381
RESEARCH
PROGRESS
AEMS
FOR
MFCS
381
SUMMARY
AND
FUTURE
PERSPECTIVES
382
AEMS
IN
OTHER
APPLICATIONS
382
SUMMARY
383
ABBREVIATIONS
383
XII
CONTENTS
16
RESEARCH
CHALLENGES
AND
FUTURE
DIRECTIONS
ON
ANION
EXCHANGE
MEMBRANES
FOR
FUEL
CELLS
393
JINCE
THOMAS,
PARTHIBAN
VELAYUDHAM,
RAMESH
K.
SINGH,
SABU
THOMAS,
ALEX
SCHECHTER,
AND
FLAVIO
GRYNSZPAN
16.1
PRELUDE
TO
ANION
EXCHANGE
MEMBRANES
393
16.2
PROGRESS
IN
AEM
DEVELOPMENT
395
16.2.1
POLYARYLENE-BASED
AEMS
396
16.2.2
POLYETHYLENE-BASED
AEMS
397
16.2.3
MAIN
CHAIN-BASED
AEMS
399
16.2.4
BLOCK
COPOLYMER
BASED
AEMS
400
16.2.5
LONG
SIDE-CHAIN
AEMS
401
16.2.6
CROSS-LINKED
AEMS
401
16.2.7
ORGANIC-INORGANIC
COMPOSITE
AEMS
403
16.2.8
AEMS
BASED
ON
CATIONIC
FUNCTIONAL
GROUPS
404
16.2.9
CHALLENGES
DEVELOPING
LONG-LASTING
AEMS
404
16.2.10
CHEMICAL
STABILITY
405
16.2.10.1
ALKALINE
STABILITY
405
16.2.10.2
OXIDATIVE
STABILITY
406
16.2.11
IONIC
CONDUCTIVITY
406
16.2.12
MECHANICAL
AND
DIMENSIONAL
STABILITY
407
16.3
DURABILITY
OF
ANION
EXCHANGE
MEMBRANE
FUEL
CELLS
408
16.3.1
WATER
MANAGEMENT
408
16.3.2
CARBONATION
EFFECT
409
16.3.3
MEMBRANE-ELECTRODE
INTERFACE
410
16.4
FUTURE
DIRECTIONS
411
16.4.1
EXPANSION
OF
AEM
DEVELOPMENT
411
16.4.1.1
IONOMER
DEVELOPMENT
414
16.4.1.2
CATALYST
DEVELOPMENT
415
16.4.1.3
MEMBRANE
ELECTRODE
ASSEMBLY
DEVELOPMENTS
416
16.5
CONCLUDING
REMARKS
416
INDEX
425 |
adam_txt |
V
CONTENTS
PREFACE
XIII
1
AN
INTRODUCTION
TO
POLYMERIC
ELECTROLYTE
ALKALINE
ANION
EXCHANGE
MEMBRANES
1
JINCE
THOMAS,
MINU
ELIZABETH
THOMAS,
BEJOY
FRANCIS,
AND
SABU
THOMAS
1.1
INTRODUCTION
1
1.2
DIFFERENT
TYPES
OF
ELECTROLYTES
2
1.3
WHY
POLYMER
ELECTROLYTES
ARE
IMPORTANT?
3
1.4
ANION
EXCHANGE
MEMBRANE
(AEM)
5
1.4.1
FUNDAMENTAL
CONCEPTS
OF
ANION
EXCHANGE
MEMBRANES
AS
POLYMER
ELECTROLYTES
5
1.4.2
CLASSIFICATION
OF
AEM
7
1.4.3
PROS
AND
CONS
OF
AEM
8
1.4.4
APPLICATION
OF
AEM
9
1.5
AEMSIN
FUEL
CELLS
10
1.6
CONCLUSION
AND
OUTLOOK
11
2
HISTORICAL
AND
RECENT
DEVELOPMENTS
IN
ANION
EXCHANGE
MEMBRANES
(AEM)
15
PRIYA
GOEL,
PRIYABRATA
MANDAL,
SUJAY
CHATTOPADHYAY,
AND
VINOD
K.
SHAHI
2.1
INTRODUCTION
15
2.2
FUEL
CELL:
CONVENTIONAL
VERSUS
MODERN
APPROACH
16
2.3
ROLE
OF
AEM
IN
FUEL
CELL
TECHNOLOGY
18
2.4
PREPARATION
OF
AEMS
20
2.5
CHALLENGES
IN
EXISTING
AEMS
21
2.6
RECENT
ADVANCEMENT
22
2.7
MAJOR
CHALLENGES
23
2.8
COMMERCIALLY
AVAILABLE
AEMS
28
2.9
CURRENT
SCENARIO
AND
FUTURE
MARKET
29
2.10
SUMMARY
AND
CONCLUDING
REMARKS
30
VI
CONTENTS
3
FABRICATION
PROCESSES
AND
CHARACTERIZATION
PROCEDURES
OF
ANION
EXCHANGE
MEMBRANES
37
GRACIELA
C.
ABUIN
AND
ROXANA
E.
COPPOLA
3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.4
INTRODUCTION
37
FABRICATION
PROCESSES
OF
ANION
EXCHANGE
MEMBRANES
39
AEM
OF
CATIONIC
CHARGED
POLYMERS
39
AEMS
OF
ION-SOLVATING
POLYMERS
41
AEMS
WITH
NANOFIBERS
42
HYBRID
AEMS
43
RECENT
DEVELOPMENTS
IN
AEMS
44
CHARACTERIZATION
PROCEDURES
OF
AEMS
46
IONIC
CONDUCTIVITY
52
IEC,
SWELLING
RATIO,
AND
WATER
CONTENT
53
MECHANICAL
AND
THERMAL
PROPERTIES
54
CHEMICAL
STABILITY
55
CHEMICAL
COMPOSITION
AND
MORPHOLOGICAL
CHARACTERIZATION
55
OTHER
CHARACTERIZATIONS
57
CONCLUSIONS
57
4
TYPES
OF
POLYMERIC
ELECTROLYTE
ANION
EXCHANGE
MEMBRANES:
HETEROGENEOUS
AND
GRAFTED
MEMBRANES,
INTERPENETRATING
POLYMER
NETWORKS
AND
HOMOGENEOUS
MEMBRANES
67
LIANG
ZHU
4.1
4.1.1
4.1.2
4.2
4.2.1
4.2.2
4.2.3
4.3
4.3.1
HETEROGENOUS
ANION
EXCHANGE
MEMBRANES
67
ION-SOLVATING
POLYMERS
67
HYBRID
MEMBRANES
67
GRAFTED
ANION
EXCHANGE
MEMBRANES
70
RADIATION-GRAFTED
MEMBRANES
70
SIDE
CHAIN
GRAFTED
MEMBRANES
72
LONG-SIDE-CHAIN
GRAFTED
MEMBRANES
74
INTERPENETRATING
ANION
EXCHANGE
MEMBRANES
75
ANION
EXCHANGE
MEMBRANES
BASED
ON
INTERPENETRATING
POLYMER
NETWORKS
(IPN)
76
4.3.2
ANION
EXCHANGE
MEMBRANES
BASED
ON
SEMI-INTERPENETRATING
POLYMER
NETWORKS
(SEMI-IPN)
77
4.4
4.4.1
4.4.2
4.4.3
HOMOGENOUS
MEMBRANES
78
HOMOGENOUS
MEMBRANES
BASED
ON
POLY(ARYLENE
ETHER)S
79
HOMOGENOUS
MEMBRANES
BASED
ON
POLY(STYRENE)S
82
HOMOGENOUS MEMBRANES
BASED
ON
POLY(2,6-DIMETHYL-L,
4-PHENYLENE
OXIDE)
82
4.4.4
4.4.5
4.4.6
4.5
FLUORENE-CONTAINING
HOMOGENOUS
MEMBRANES
86
HOMOGENOUS MEMBRANES
BASED
ON
POLYOLEFINS
86
OTHER
KINDS
OF
HOMOGENOUS
MEMBRANES
88
CONCLUSIONS
90
CONTENTS
|
VII
5
PROTON
EXCHANGE
MEMBRANES
VERSUS
ANION
EXCHANGE
MEMBRANES
97
MARILYN
M.
XAVIER
AND
SURESH
MATHEW
5.1
INTRODUCTION
97
5.2
PROTON
EXCHANGE
MEMBRANE
(PEM)
98
5.2.1
CLASSIFICATION
OF
PEM
MEMBRANES
BASED
ON
THE
MATERIALS
OF
SYNTHESIS
99
5.2.1.1
PERFLUORINATED
IONOMERIC
MEMBRANES
99
5.2.1.2
PARTIALLY
FLUORINATED
HYDROCARBON MEMBRANES
100
5.2.1.3
NON-FLUORINATED
HYDROCARBON MEMBRANES
101
5.2.1.4
ACID-BASE
COMPLEXES
101
5.2.2
PREPARATION
METHODS
OF
PEM
102
5.2.3
PROTON
TRANSPORT
MECHANISM IN
PEM
103
5.2.4
CURRENT
STATE
OF
ART
OF
PEM
103
5.3
COMPARISON
WITH
AEM
105
5.3.1
MATERIALS
USED
FOR
PREPARATIONS
105
5.3.2
INVESTIGATIVE
METHODS
AND
MEASUREMENT
FOR
ION-EXCHANGE
MEMBRANES
106
5.3.2.1
IONIC
CONDUCTIVITY
106
5.3.2.2
WATER
ABSORPTION OR
SWELLING
INDEX
107
5.3.2.3
ION-EXCHANGE
CAPACITY
(IEC)
OF
THE
MEMBRANE
107
5.3.2.4
THERMAL
STABILITY
AND
MECHANICAL
STRENGTH
108
5.3.2.5
DURABILITY
OF
THE
MEMBRANES
109
5.3.3
WATER
MANAGEMENT
109
5.3.4
TRANSPORT
MECHANISM
110
5.3.5
CATALYST
USED
IN
PEMFC
AND
AEMFC
111
5.3.6
MEA
FABRICATION
112
5.3.7
FUELS
USED
IN
FUEL
CELLS
113
5.3.8
FUEL
CELL
EFFICIENCY
115
5.4
CONCLUSION
115
6
TRANSPORT
AND
CONDUCTIVE
MECHANISMS
IN
ANION
EXCHANGE
MEMBRANES
125
RAMATO
A.
TUFA,
MISGINA
T.
TSEHAYE,
WENJUAN
ZHANG,
MARCO
AQUINO,
SERGIO
SANTORO,
AND
EFREM
CURCIO
6.1
INTRODUCTION
125
6.2
TRANSPORT
MECHANISMS
OF
HYDROXIDE
ION
IN
AEMS
126
6.3
AEM
STRUCTURE-TRANSPORT
EFFICIENCY
RELATIONSHIPS
130
6.4
ION
CONDUCTIVITY
MEASUREMENT
131
6.5
CARBONATION
PROCESS
IN
AEMS
133
6.5.1
ELUCIDATING
THE
DYNAMICS
OF
CARBONATION
133
6.5.2
IMPACT
OF
CARBONATION
ON
AEM
AND
AEMFC
133
6.5.3
STRATEGIES
TO
AVOID
CARBONATION
OF
OH
-
IONS
134
6.6
CONCLUSION
AND
OUTLOOK
137
VIII
CONTENTS
7
ANION
EXCHANGE
MEMBRANES
BASED
ON
QUATERNARY
AMMONIUM
CATIONS
AND
MODIFIED
QUATERNARY
AMMONIUM
CATIONS
143
VIJAYALEKSHMI
VIJAYAKUMAR
AND
SANG
YONG
NAM
7.1
7.1.1
7.2
INTRODUCTION
143
BACKGROUND
OF
AEMFC
INVENTION
144
QUATERNARY
AMMONIUM
(QA)-BASED
AEMS
-
RECENT
DEVELOPMENTS
AND
PERFORMANCES
145
7.3
7.4
OTHER
FACTORS
AFFECTING
PERFORMANCE
OF
FUEL
CELLS
158
SUMMARY
AND
PERSPECTIVES
159
8
GUANIDINIUM
CATIONS
AND
THEIR
DERIVATIVES-BASED
ANION
EXCHANGE
MEMBRANES
167
JIFU
ZHENG,
BOXIN
XUE,
AND
SUOBO
ZHANG
8.1
8.2
8.3
INTRODUCTION
167
GENERAL
SYNTHETIC
METHOD
OF
VARIOUS
GUANIDINIUMS
168
DEGRADATION MECHANISM
AND
ALKALINE
STABILITY
OF
GUANIDINIUM
CATIONS
169
8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.5
PREPARATION
OF
GUANIDINIUM
AND
THEIR
DERIVATIVE-BASED
AEMS
176
BENZYL-GUANIDINIUM
AEMS
176
ALKYL-GUANIDINIUM
AEMS
179
ARYL-GUANIDINIUM
AEMS
180
OTHER
GUANIDINIUM-BASED
AEMS
183
PROSPECT
186
9
ANION
EXCHANGE
MEMBRANES
BASED
ON
IMIDAZOLIUM
AND
TRIAZOLIUM
CATIONS
189
DO-HYEONG
KIM,
VIJAYALEKSHMI
VIJAYAKUMAR,
AND
SANG
YONG
NAM
9.1
9.2
9.2.1
9.2.2
9.3
9.4
INTRODUCTION
189
AEMS
BASED
ON
IMIDAZOLIUM
CATIONS
190
AEMS
BASED
ON
IMIDAZOLIUM-TYPE
IONIC
LIQUIDS
191
IMIDAZOLE
CONTAINING
POLYMERS
AND
COMPOSITES
194
AEM
BASED
ON
TRIAZOLIUM
CATIONS
203
SUMMARY
AND
FUTURE
PERSPECTIVES
204
10
RADIATION-GRAFTED
AND
CROSS-LINKED
POLYMERS-BASED
ANION
EXCHANGE
MEMBRANES
211
ANA
LAURA
G.
BIONCOLLI,
BIANCA
P.
SILVA
SANTOS,
AND
ELISABETE
I.
SANTIAGO
10.1
10.2
10.3
10.3.1
10.3.2
10.3.3
10.3.4
HISTORIC
OVERVIEW
211
SOURCES
OF
RADIATION
213
TYPES
OF
RADIATION-INDUCED
GRAFTING
214
ABSORBED
DOSE
218
DOSE
RATE
218
ATMOSPHERE
DURING
IRRADIATION
218
TEMPERATURE
DURING
IRRADIATION
219
CONTENTS
IX
10.4
BASE
POLYMER
220
10.5
GRAFTING
SOLUTION
221
10.6
PHYSICOCHEMICAL
PROPERTIES
OF
RG-AEMS
223
10.7
CROSS-LINKING
IN
AEMS
224
10.7.1
PHYSICAL
CROSS-LINKING
225
10.7.2
CHEMICAL
CROSS-LINKING
226
10.7.2.1
CROSS-LINKING
WITH
DIAMINE
AGENTS
226
10.7.2.2
CHEMICAL
CROSS-LINKING
REACTION
WITH
OTHER
AGENTS
228
10.7.2.3
OTHER
METHODS OF
PRODUCING
CROSS-LINKED
MEMBRANES
230
10.8
CONCLUSIONS
231
11
DEGRADATION
MECHANISMS
OF
ANION
EXCHANGE
MEMBRANES
DUE
TO
ALKALI
HYDROLYSIS
AND
RADICAL
OXIDATIVE
SPECIES
241
JEET
SHARMA
AND
VAIBHAV
KULSHRESTHA
11.1
INTRODUCTION
241
11.2
NECESSITY
TO
INVESTIGATE
THE
DEGRADATION
MECHANISM
IN
AEMS
242
11.3
STRUCTURE
AND
DEGRADATION
MECHANISM
OF
TAILORED
ANION
EXCHANGE
GROUPS
AND
POLYMERS
243
11.3.1
ALKALINE
HYDROLYSIS
OF
CATIONIC
HEAD
GROUPS
244
11.3.2
ALKALINE
HYDROLYSIS
OF
NOVEL
METALLOCENIUM
BASED
AEMS
263
11.3.3
ALKALINE
HYDROLYSIS
OF
POLYMERS
266
11.3.3.1
DEGRADATION
MECHANISM IN
POLY(ARYLENE
ETHERS)
(PAES)
267
11.3.3.2
DEGRADATION
MECHANISM
IN
FLUORINATED
POLYMER
269
11.3.3.3
DEGRADATION
MECHANISM
IN
POLY(BENZIMIDAZOLE)
BASED
POLYMERS
270
11.3.3.4
DEGRADATION
MECHANISM
IN
POLY(ALKYL)
AND
POLY(ARENE)
BASED
POLYMERS
272
11.3.4
FREE
RADICAL
OXIDATIVE
DEGRADATION
OF
AEM
274
11.4
PROSPECTS
AND
OUTLOOK
275
11.5
CONCLUSION
276
12
-
COMPUTATIONAL
APPROACHES
TO
ALKALINE
ANION
EXCHANGE
MEMBRANES
285
MINU
ELIZABETH
THOMAS
12.1
INTRODUCTION
285
12.2
WHY
COMPUTATIONAL
STUDIES
ARE
IMPORTANT
IN
ANION
EXCHANGE
MEMBRANES?
286
12.3
TOOLS
OF
IN
SILICO
APPROACHES
IN
ANION
EXCHANGE
MEMBRANES
287
12.3.1
ELECTRONIC
STRUCTURE
METHODS
IN
ANION
EXCHANGE
MEMBRANES
288
12.3.1.1
ANALYSIS
ON
HOMO-LUMO
ENERGIES
AND
MULLIKEN
CHARGES
289
12.3.1.2
ANALYSIS
ON
ESP
292
12.3.1.3
ANALYSIS
ON
CHEMICAL
STRUCTURE
AND
BONDING
NATURE
294
12.3.1.4
ANALYSIS
ON
DEGRADATION
PATHWAYS
295
12.3.2
MOLECULAR
DYNAMICS
IN
ANION
EXCHANGE
MEMBRANES
297
12.3.3
CONTINUUM
MODELING
AND
SIMULATION
IN
ANION
EXCHANGE
MEMBRANES
300
CONTENTS
12.3.4
MONTE
CARLO
SIMULATIONS
IN
ANION
EXCHANGE
MEMBRANES
301
12.3.5
MACHINE
LEARNING
IN
ANION
EXCHANGE
MEMBRANES
301
12.4
CHALLENGES
AND
OUTLOOK
303
12.5
CONCLUSION
304
13
AN
OVERVIEW
OF
COMMERCIAL AND
NON-COMMERCIAL
ANION
EXCHANGE
MEMBRANES
309
YANG
ZHANG,
FAN
ZHANG,
LIANG
WU,
XIAOLIN
GE,
AND
TONGWEN
XU
13.1
INTRODUCTION
309
13.1.1
CHARACTERISTICS
AND
EXISTING
PROBLEMS
OF
COMMERCIAL
ALKALINE
ANION
EXCHANGE
MEMBRANES
310
13.1.1.1
FUMATECH:
FUMASEP
310
13.1.1.2
TOKUYAMA:
A201
310
13.1.1.3
LONOMR:
AEMION
311
13.1.1.4
DIOXIDE
MATERIALS:
SUSTAINION
311
13.1.1.5
ORION
POLYMER:
ORION
TM1
312
13.1.1.6
XERGY:
XION-DAPPION,
XION-DURION,
XION-PENTION
312
13.1.1.7
VERSOGEN:
PIPERLON
313
13.1.1.8
MEMBRANES
INTERNATIONAL
INC.:
AMI
7001
314
13.1.1.9
ASAHI
GLASS:
SELEMION
AMV
314
13.1.2
CHARACTERISTICS
AND
EXISTING
PROBLEMS
OF
NON-COMMERCIAL
ALKALINE
ANION
EXCHANGE
MEMBRANE
314
13.1.3
STRATEGIES
TO
IMPROVE
THE
PROPERTIES
OF
AEMS
317
13.1.3.1
THE
REGULATION
OF
MICROPHASE
MORPHOLOGIES
317
13.1.3.2
CONSTRUCTING
FREE
VOLUMES
320
13.1.3.3
THE
INTRODUCTION
OF
CROSS-LINKING
STRUCTURES
322
13.1.3.4
OTHER
PHYSICAL
METHODS
324
13.1.3.5
THE
DEVELOPMENT
OF
NOVEL
CATIONIC
FUNCTIONAL
GROUPS
AND
ARYL
ETHER-FREE
MAIN
CHAINS
WITH
HIGH
STABILITY
329
13.2
SUMMARY
AND
OUTLOOKS
334
14
MEMBRANE
ELECTRODE
ASSEMBLY
PREPARATION
FOR
ANION
EXCHANGE
MEMBRANE
FUEL
CELL
(AEMFC):
SELECTION
OF
IONOMERS
AND
HOW
TO
AVOID
CO2
POISONING
341
WEIHONG
YANG,
QIUYU
ZHANG,
AND
YI
YAN
14.1
THE
PREPARATION
OF
MEMBRANE
ELECTRODE
ASSEMBLY
341
14.2
SELECTION
OF
IONOMERS
344
14.2.1
COMMERCIAL
IONOMERS
345
14.2.2
CUSTOM-MADE
IONOMERS
346
14.3
EFFECT
OF
CO2
ON
AEMFCS
348
14.3.1
EFFECT
OF
CO2
ON
EX
SITU
MEASURED
CONDUCTIVITY
348
14.3.2
EFFECT
OF
CO2
ON
ELECTROCHEMICAL
REACTIONS
ON
THE
ELECTRODES
350
14.3.3
EFFECT
OF
CO2
ON FUEL
CELL
PERFORMANCE
350
14.4
STRATEGIES
TO
AVOID
CO2
POISONING
351
CONTENTS
XI
14.4.1
14.4.2
14.4.3
14.5
14.5.1
14.5.2
14.5.3
14.6
REDUCING
HCO3/CO32
CONCENTRATION
THROUGH
SELF-PURGING
351
INCREASING
THE
CURRENT
DENSITY
TO
IMPROVE
THE
OUTLET
OF
CO2
352
FILTERED
THE
FEEDING
AIR
353
THE
IMPROVEMENT
OF
AEMFC
OUTPUT
353
ELECTRODE
OPTIMIZATION
353
CATALYST
OPTIMIZATION
354
OPTIMIZATION
OF
OPERATION
CONDITIONS
354
CONCLUSIONS
355
15
APPLICATIONS
OF
ANION
EXCHANGE
MEMBRANES
EXCLUDING
FUEL
CELLS
361
XIUQIN
WANG
AND
ROB
G.H.
LAMMERTINK
15.1
15.1.1
15.1.2
15.1.3
15.2
15.3
15.3.1
15.3.2
15.3.3
15.4
15.4.1
15.4.2
15.4.3
15.5
15.5.1
15.5.2
15.5.3
15.6
15.6.1
15.6.2
15.6.3
15.7
15.7.1
15.7.2
15.7.3
15.8
15.8.1
15.8.2
15.8.3
15.9
15.10
AEMS
IN
ALKALINE
WATER
ELECTROLYSIS
361
WORKING
PRINCIPLE
362
RESEARCH
PROGRESS
OF
AEMS
FOR
AEMWE
363
SUMMARY
AND
FUTURE
PERSPECTIVES
365
AEMS
IN
CO2
ELECTROLYSIS
366
AEMS
IN
REDOX
FLOW
BATTERIES
367
WORKING
PRINCIPLE
368
RESEARCH
PROGRESS
OF
AEMS
FOR
VRFBS
369
SUMMARY
AND
FUTURE
PERSPECTIVES
371
AEMS
IN
ALKALI
METAL-AIR
BATTERIES
371
WORKING
PRINCIPLE
372
RESEARCH
PROGRESS
OF
AEMS
FOR
RECHARGEABLE
ZABS
372
SUMMARY
AND
FUTURE
PERSPECTIVES
373
AEMS
IN
REVERSE
ELECTRODIALYSIS
374
WORKING
PRINCIPLE
374
RESEARCH
PROGRESS
OF
AEMS
FOR
RED
375
SUMMARY
AND
FUTURE
PERSPECTIVES
376
AEMS
IN
ELECTRODIALYSIS
376
WORKING
PRINCIPLE
376
RESEARCH
PROGRESS
OF
AEMS
FOR
ED
377
SUMMARY
AND
FUTURE
PERSPECTIVES
378
AEMS
IN
DIFFUSION
DIALYSIS
378
WORKING
PRINCIPLE
379
RESEARCH
PROGRESS
OF
AEMS
FOR
DD
379
SUMMARY
AND
FUTURE
PERSPECTIVES
380
AEMS
IN
MICROBIAL
FUEL
CELLS
380
WORKING
PRINCIPLE
381
RESEARCH
PROGRESS
AEMS
FOR
MFCS
381
SUMMARY
AND
FUTURE
PERSPECTIVES
382
AEMS
IN
OTHER
APPLICATIONS
382
SUMMARY
383
ABBREVIATIONS
383
XII
CONTENTS
16
RESEARCH
CHALLENGES
AND
FUTURE
DIRECTIONS
ON
ANION
EXCHANGE
MEMBRANES
FOR
FUEL
CELLS
393
JINCE
THOMAS,
PARTHIBAN
VELAYUDHAM,
RAMESH
K.
SINGH,
SABU
THOMAS,
ALEX
SCHECHTER,
AND
FLAVIO
GRYNSZPAN
16.1
PRELUDE
TO
ANION
EXCHANGE
MEMBRANES
393
16.2
PROGRESS
IN
AEM
DEVELOPMENT
395
16.2.1
POLYARYLENE-BASED
AEMS
396
16.2.2
POLYETHYLENE-BASED
AEMS
397
16.2.3
MAIN
CHAIN-BASED
AEMS
399
16.2.4
BLOCK
COPOLYMER
BASED
AEMS
400
16.2.5
LONG
SIDE-CHAIN
AEMS
401
16.2.6
CROSS-LINKED
AEMS
401
16.2.7
ORGANIC-INORGANIC
COMPOSITE
AEMS
403
16.2.8
AEMS
BASED
ON
CATIONIC
FUNCTIONAL
GROUPS
404
16.2.9
CHALLENGES
DEVELOPING
LONG-LASTING
AEMS
404
16.2.10
CHEMICAL
STABILITY
405
16.2.10.1
ALKALINE
STABILITY
405
16.2.10.2
OXIDATIVE
STABILITY
406
16.2.11
IONIC
CONDUCTIVITY
406
16.2.12
MECHANICAL
AND
DIMENSIONAL
STABILITY
407
16.3
DURABILITY
OF
ANION
EXCHANGE
MEMBRANE
FUEL
CELLS
408
16.3.1
WATER
MANAGEMENT
408
16.3.2
CARBONATION
EFFECT
409
16.3.3
MEMBRANE-ELECTRODE
INTERFACE
410
16.4
FUTURE
DIRECTIONS
411
16.4.1
EXPANSION
OF
AEM
DEVELOPMENT
411
16.4.1.1
IONOMER
DEVELOPMENT
414
16.4.1.2
CATALYST
DEVELOPMENT
415
16.4.1.3
MEMBRANE
ELECTRODE
ASSEMBLY
DEVELOPMENTS
416
16.5
CONCLUDING
REMARKS
416
INDEX
425 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Thomas, Jince Schechter, Alex Grynszpan, Flavio Francis, Bejoy Thomas, Sabu 1960- |
author2_role | edt edt edt edt edt |
author2_variant | j t jt a s as f g fg b f bf s t st |
author_GND | (DE-588)1021317551 |
author_facet | Thomas, Jince Schechter, Alex Grynszpan, Flavio Francis, Bejoy Thomas, Sabu 1960- |
building | Verbundindex |
bvnumber | BV049568029 |
ctrlnum | (OCoLC)1407050564 (DE-599)DNB1307769195 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000008c 4500</leader><controlfield tag="001">BV049568029</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240429</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">240213s2024 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">23,N44</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1307769195</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527350391</subfield><subfield code="c">: circa EUR 159.00 (DE) (freier Preis), circa EUR 163.50 (AT) (freier Preis)</subfield><subfield code="9">978-3-527-35039-1</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527350391</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 1135039 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1407050564</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1307769195</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">540</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Alkaline anion exchange membranes for fuel cells</subfield><subfield code="b">from tailored materials to novel applications</subfield><subfield code="c">edited by Jince Thomas, Alex Schechter, Flavio Grynszpan, Bejoy Francis, and Sabu Thomas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xv, 432 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">24.4 cm x 17 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Membranionenaustauscher</subfield><subfield code="0">(DE-588)4137317-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Brennstoffzelle</subfield><subfield code="0">(DE-588)4008195-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polyelektrolyt</subfield><subfield code="0">(DE-588)4175165-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anion</subfield><subfield code="0">(DE-588)4130938-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">10: Verstehen</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Batterien u. Brennstoffzellen</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Batteries & Fuel Cells</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Brennstoffzelle</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CHA1: Batterien u. Brennstoffzellen</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">EG32: Wasserstoff, Batterien u. Brennstoffzellen</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Energie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Energy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hydrogen, Batteries & Fuel Cells</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">MSL0: Materialien f. Energiesysteme</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Materialien f. Energiesysteme</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Materials Science</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Materials for Energy Systems</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Materialwissenschaften</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Membran</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Wasserstoff, Batterien u. Brennstoffzellen</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Brennstoffzelle</subfield><subfield code="0">(DE-588)4008195-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Membranionenaustauscher</subfield><subfield code="0">(DE-588)4137317-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Anion</subfield><subfield code="0">(DE-588)4130938-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Polyelektrolyt</subfield><subfield code="0">(DE-588)4175165-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thomas, Jince</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schechter, Alex</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grynszpan, Flavio</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Francis, Bejoy</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thomas, Sabu</subfield><subfield code="d">1960-</subfield><subfield code="0">(DE-588)1021317551</subfield><subfield code="4">edt</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Wiley-VCH</subfield><subfield code="0">(DE-588)16179388-5</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-527-83760-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-527-83759-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, oBook</subfield><subfield code="z">978-3-527-83758-8</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-35039-1/</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034913284&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">vlb</subfield><subfield code="d">20231029</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#vlb</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034913284</subfield></datafield></record></collection> |
id | DE-604.BV049568029 |
illustrated | Illustrated |
index_date | 2024-07-03T23:29:51Z |
indexdate | 2025-01-17T13:04:00Z |
institution | BVB |
institution_GND | (DE-588)16179388-5 |
isbn | 9783527350391 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034913284 |
oclc_num | 1407050564 |
open_access_boolean | |
owner | DE-29T DE-703 DE-11 |
owner_facet | DE-29T DE-703 DE-11 |
physical | xv, 432 Seiten Illustrationen 24.4 cm x 17 cm |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Alkaline anion exchange membranes for fuel cells from tailored materials to novel applications edited by Jince Thomas, Alex Schechter, Flavio Grynszpan, Bejoy Francis, and Sabu Thomas Weinheim Wiley-VCH [2024] xv, 432 Seiten Illustrationen 24.4 cm x 17 cm txt rdacontent n rdamedia nc rdacarrier Membranionenaustauscher (DE-588)4137317-0 gnd rswk-swf Brennstoffzelle (DE-588)4008195-3 gnd rswk-swf Polyelektrolyt (DE-588)4175165-6 gnd rswk-swf Anion (DE-588)4130938-8 gnd rswk-swf 10: Verstehen Batterien u. Brennstoffzellen Batteries & Fuel Cells Brennstoffzelle CHA1: Batterien u. Brennstoffzellen Chemie Chemistry EG32: Wasserstoff, Batterien u. Brennstoffzellen Energie Energy Hydrogen, Batteries & Fuel Cells MSL0: Materialien f. Energiesysteme Materialien f. Energiesysteme Materials Science Materials for Energy Systems Materialwissenschaften Membran Wasserstoff, Batterien u. Brennstoffzellen Brennstoffzelle (DE-588)4008195-3 s Membranionenaustauscher (DE-588)4137317-0 s Anion (DE-588)4130938-8 s Polyelektrolyt (DE-588)4175165-6 s DE-604 Thomas, Jince edt Schechter, Alex edt Grynszpan, Flavio edt Francis, Bejoy edt Thomas, Sabu 1960- (DE-588)1021317551 edt Wiley-VCH (DE-588)16179388-5 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-527-83760-1 Erscheint auch als Online-Ausgabe, EPUB 978-3-527-83759-5 Erscheint auch als Online-Ausgabe, oBook 978-3-527-83758-8 X:MVB http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-35039-1/ DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034913284&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p vlb 20231029 DE-101 https://d-nb.info/provenance/plan#vlb |
spellingShingle | Alkaline anion exchange membranes for fuel cells from tailored materials to novel applications Membranionenaustauscher (DE-588)4137317-0 gnd Brennstoffzelle (DE-588)4008195-3 gnd Polyelektrolyt (DE-588)4175165-6 gnd Anion (DE-588)4130938-8 gnd |
subject_GND | (DE-588)4137317-0 (DE-588)4008195-3 (DE-588)4175165-6 (DE-588)4130938-8 |
title | Alkaline anion exchange membranes for fuel cells from tailored materials to novel applications |
title_auth | Alkaline anion exchange membranes for fuel cells from tailored materials to novel applications |
title_exact_search | Alkaline anion exchange membranes for fuel cells from tailored materials to novel applications |
title_exact_search_txtP | Alkaline anion exchange membranes for fuel cells from tailored materials to novel applications |
title_full | Alkaline anion exchange membranes for fuel cells from tailored materials to novel applications edited by Jince Thomas, Alex Schechter, Flavio Grynszpan, Bejoy Francis, and Sabu Thomas |
title_fullStr | Alkaline anion exchange membranes for fuel cells from tailored materials to novel applications edited by Jince Thomas, Alex Schechter, Flavio Grynszpan, Bejoy Francis, and Sabu Thomas |
title_full_unstemmed | Alkaline anion exchange membranes for fuel cells from tailored materials to novel applications edited by Jince Thomas, Alex Schechter, Flavio Grynszpan, Bejoy Francis, and Sabu Thomas |
title_short | Alkaline anion exchange membranes for fuel cells |
title_sort | alkaline anion exchange membranes for fuel cells from tailored materials to novel applications |
title_sub | from tailored materials to novel applications |
topic | Membranionenaustauscher (DE-588)4137317-0 gnd Brennstoffzelle (DE-588)4008195-3 gnd Polyelektrolyt (DE-588)4175165-6 gnd Anion (DE-588)4130938-8 gnd |
topic_facet | Membranionenaustauscher Brennstoffzelle Polyelektrolyt Anion |
url | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-35039-1/ http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034913284&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT thomasjince alkalineanionexchangemembranesforfuelcellsfromtailoredmaterialstonovelapplications AT schechteralex alkalineanionexchangemembranesforfuelcellsfromtailoredmaterialstonovelapplications AT grynszpanflavio alkalineanionexchangemembranesforfuelcellsfromtailoredmaterialstonovelapplications AT francisbejoy alkalineanionexchangemembranesforfuelcellsfromtailoredmaterialstonovelapplications AT thomassabu alkalineanionexchangemembranesforfuelcellsfromtailoredmaterialstonovelapplications AT wileyvch alkalineanionexchangemembranesforfuelcellsfromtailoredmaterialstonovelapplications |