Thermal management materials for electronic packaging: preparation, characterization, and devices
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
[2024]
|
Schlagworte: | |
Online-Zugang: | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-35242-5/ Inhaltsverzeichnis |
Beschreibung: | xvii, 341 Seiten Illustrationen, Diagramme 24.4 cm x 17 cm |
ISBN: | 9783527352425 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV049566597 | ||
003 | DE-604 | ||
005 | 20241128 | ||
007 | t| | ||
008 | 240212s2024 gw a||| |||| 00||| eng d | ||
015 | |a 23,N28 |2 dnb | ||
016 | 7 | |a 1294992422 |2 DE-101 | |
020 | |a 9783527352425 |c : EUR 149.00 (DE) (freier Preis), EUR 153.20 (AT) (freier Preis) |9 978-3-527-35242-5 | ||
024 | 3 | |a 9783527352425 | |
028 | 5 | 2 | |a Bestellnummer: 1135242 000 |
035 | |a (OCoLC)1427315846 | ||
035 | |a (DE-599)DNB1294992422 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-29T |a DE-703 | ||
084 | |a ZN 4192 |0 (DE-625)157372: |2 rvk | ||
084 | |8 1\p |a 540 |2 23sdnb | ||
245 | 1 | 0 | |a Thermal management materials for electronic packaging |b preparation, characterization, and devices |c edited by Xingyou Tian |
264 | 1 | |a Weinheim |b Wiley-VCH |c [2024] | |
300 | |a xvii, 341 Seiten |b Illustrationen, Diagramme |c 24.4 cm x 17 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Wärmeleitfähigkeit |0 (DE-588)4064191-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Halbleitergehäuse |0 (DE-588)4143472-9 |2 gnd |9 rswk-swf |
653 | |a Components & Devices | ||
653 | |a EE60: Komponenten u. Bauelemente | ||
653 | |a Electrical & Electronics Engineering | ||
653 | |a Electronic Materials | ||
653 | |a Elektronische Materialien | ||
653 | |a Elektrotechnik u. Elektronik | ||
653 | |a Halbleiterphysik | ||
653 | |a Komponenten u. Bauelemente | ||
653 | |a MS40: Elektronische Materialien | ||
653 | |a Materials Science | ||
653 | |a Materialwissenschaften | ||
653 | |a PH62: Halbleiterphysik | ||
653 | |a Physics | ||
653 | |a Physik | ||
653 | |a Semiconductor Physics | ||
689 | 0 | 0 | |a Halbleitergehäuse |0 (DE-588)4143472-9 |D s |
689 | 0 | 1 | |a Wärmeleitfähigkeit |0 (DE-588)4064191-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Tian, Xingyou |0 (DE-588)1318850258 |4 edt | |
710 | 2 | |a Wiley-VCH |0 (DE-588)16179388-5 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-527-84311-4 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-527-84310-7 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-527-84312-1 |
856 | 4 | 2 | |m X:MVB |u http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-35242-5/ |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034911884&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a vlb |d 20230705 |q DE-101 |u https://d-nb.info/provenance/plan#vlb | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034911884 |
Datensatz im Suchindex
_version_ | 1816956255445450752 |
---|---|
adam_text |
CONTENTS
OVERVIEW
OF
WORKS
XV
ACKNOWLEDGMENTS
XVII
1
PHYSICAL
BASIS
OF
THERMAL
CONDUCTION
1
XIAN
ZHANG,
PING
ZHANG,
CHAO
XIAO,
YANYAN
WANG,
XIN
DING,
XIANGLAN
LIU,
AND
XINGYOU
TIAN
1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.2
1.2.1
1.2.2
1.3
1.3.1
1.3.2
1.3.2.1
1.3.2.2
1.3.3
1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.4.5
BASIC
CONCEPTS
AND
LAWS
OF
THERMAL
CONDUCTION
1
DESCRIPTION
OF
TEMPERATURE
FIELD
1
TEMPERATURE
GRADIENT
2
FOURIER
'
S
LAW
2
HEAT
FLUX
DENSITY
FIELD
2
THERMAL
CONDUCTIVITY
3
HEAT
CONDUCTION
DIFFERENTIAL
EQUATION
AND
FINITE
SOLUTION
3
HEAT
CONDUCTION
DIFFERENTIAL
EQUATION
3
DEFINITE
CONDITIONS
5
HEAT
CONDUCTION
MECHANISM
AND
THEORETICAL
CALCULATION
5
GASES
6
SOLIDS
6
METALS
6
INORGANIC
NONMETALS
8
LIQUIDS
11
FACTORS
AFFECTING
THERMAL
CONDUCTIVITY
OF
INORGANIC
NONMETALS
12
TEMPERATURE
12
PRESSURE
13
CRYSTAL
STRUCTURE
14
THERMAL
RESISTANCE
14
OTHERS
15
REFERENCES
15
VI
CONTENTS
2
ELECTRONIC
PACKAGING
MATERIALS
FOR
THERMAL
MANAGEMENT
19
XIAN
ZHANG,
PING
ZHANG,
CHAO
XIAO,
YANYAN
WANG,
XIN
DING,
XIANGLAN
LIU,
AND
XINGYOU
TIAN
2.1
2.1.1
2.1.2
2.1.3
2.2
2.2.1
2.2.2
2.2.3
2.3
2.3.1
2.3.2
2.3.3
2.4
2.4.1
2.4.2
2.4.3
2.4.4
DEFINITION
AND
CLASSIFICATION
OF
ELECTRONIC
PACKAGING
19
DEFINITION
OF
ELECTRONIC
PACKAGING
19
FUNCTIONS
OF
ELECTRONIC
PACKAGING
20
THE
LEVELS
OF
ELECTRONIC
PACKAGING
21
THERMAL
MANAGEMENT
IN
ELECTRONIC
EQUIPMENT
22
THERMAL
SOURCES
22
THERMAL
FAILURE
RATE
23
THE
THERMAL
MANAGEMENT
AT
DIFFERENT
PACKAGE
LEVELS
23
REQUIREMENTS
OF
ELECTRONIC
PACKAGING
MATERIALS
24
THERMAL
INTERFACE
MATERIAL
24
HEAT
DISSIPATION
SUBSTRATE
25
EPOXY
MOLDING
COMPOUND
26
ELECTRONIC
PACKAGING
MATERIALS
27
METAL
MATRIX
PACKAGING
MATERIALS
27
CERAMIC
MATRIX
PACKAGING
MATERIALS
30
POLYMER
MATRIX
PACKAGING
MATERIALS
33
CARBON-CARBON
COMPOSITE
36
REFERENCES
36
3
CHARACTERIZATION
METHODS
FOR
THERMAL
MANAGEMENT
MATERIALS
39
KANG
ZHENG
AND
XINGYOU
TIAN
3.1
OVERVIEW
OF
THE
DEVELOPMENT
OF
THERMAL
CONDUCTIVITY
TEST
METHODS
39
3.2
3.2.1
3.2.2
3.3
3.3.1
3.3.2
3.3.3
3.4
3.4.1
3.4.2
3.4.3
3.5
3.5.1
3.5.1.1
3.5.1.2
3.5.1.3
TEST
METHOD
CLASSIFICATION
AND
STANDARD
SAMPLES
40
STEADY-STATE
MEASUREMENT
METHOD
41
NON-STEADY-STATE
MEASUREMENT
METHOD
42
STEADY-STATE
METHOD
42
LONGITUDINAL
HEAT
FLOW
METHOD
43
GUARDED
HEAT
FLOW
METER
METHOD
44
GUARDED
HOT
PLATE
METHOD
44
NON-STEADY-STATE
METHOD
46
LASER
FLASH
METHOD
46
HOT-WIRE
METHOD
46
TRANSIENT
PLANAR
HEAT
SOURCE
(TPS)
METHOD
47
ELECTRICAL
PROPERTIES
AND
MEASUREMENT
TECHNIQUES
48
ELECTRIC
CONDUCTIVITY
AND
RESISTIVITY
49
TESTING
RESISTIVITY
OF
BULK
MATERIAL
50
FOUR-PROBE
METHOD
50
THE
VAN
DER
PAUW
METHOD
51
CONTENTS
VII
3.5.2
3.6
3.6.1
3.6.2
3.6.2.1
3.6.2.2
3.6.2.3
3.6.3
3.6.4
3.6.5
3.6.6
3.6.7
3.6.8
3.7
3.7.1
3.7.1.1
3.7.1.2
3.7.1.3
3.7.1.4
3.7.2
3.7.2.1
3.7.2.2
3.7.2.3
3.7.2.4
3.7.2.5
3.7.2.6
3.7.2.7
DIELECTRIC
CONSTANT
AND
ITS
CHARACTERIZATION
52
MATERIAL
CHARACTERIZATION
ANALYSIS
TECHNOLOGY
54
OPTICAL
MICROSCOPE
54
X-RAY
DIFFRACTION
55
PHASE
ANALYSIS
56
DETERMINATION
OF
CRYSTALLINITY
56
PRECISE
MEASUREMENT
OF
LATTICE
PARAMETERS
56
SCANNING
ELECTRON
MICROSCOPE
57
TRANSMISSION
ELECTRON
MICROSCOPE
58
SCANNING
ACOUSTIC
MICROSCOPE
60
ATOMIC
FORCE
MICROSCOPE
62
THERMAL
MECHANICAL
ANALYSIS
(TMA)
64
DYNAMIC
MECHANICAL
ANALYSIS
(DMA)
66
RELIABILITY
ANALYSIS
AND
ENVIRONMENTAL
PERFORMANCE
EVALUATION
68
FAILURE
MODES
AND
MECHANISMS
69
RESIDUAL
STRESS
69
STRESS
VOID
70
ADHERENCE
STRENGTH
70
MOISTURE
70
RELIABILITY
CERTIFICATION
71
VISCOSITY
OF
PLASTIC
PACKAGING
MATERIAL
71
THE
MOISTURE
TEST
71
HYGROSCOPIC
STRAIN
AND
HUMIDITY
MEASUREMENT
72
TEMPERATURE
ADAPTABILITY
72
TIGHTNESS
72
DEFECTS
IN
MANUFACTURING
PROCESS
CONTROL
72
QUALITY
CONTROL
PROCEDURE
FOR
HIGH-RELIABILITY PLASTIC
PACKAGING
DEVICES
73
3.7.2.8
3.8
SELECTION
OF
HIGH-RELIABILITY
PLASTIC
PACKAGING
DEVICES
73
CONCLUSION
73
REFERENCES
74
4
CONSTRUCTION
OF
THERMAL
CONDUCTIVITY
NETWORK
AND
PERFORMANCE
OPTIMIZATION
OF
POLYMER
SUBSTRATE
77
HUA
WANG,
XINGYOU
TIAN,
HAIPING
HONG,
HAO
LI,
YANYAN
LIU,
XIAOXIAO
LI,
YUSHENG
DA,
QIANG
LIU,
BIN
YAO,
DING
LOU,
MINGYANG
MAO,
AND
ZHONG
HU
4.1
SYNTHESIS
AND
SURFACE
MODIFICATION
OF
HIGH
THERMAL
CONDUCTIVE
FILLER
AND
THE
SYNTHESIS
OF
SUBSTRATES
77
4.1.1
SYNTHESIS
OF
HEXAGONAL
BORON
NITRIDE
NANOSHEETS
BY
HALIDE-ASSISTED
HYDROTHERMAL
METHOD
AT
LOW
TEMPERATURE
77
4.1.2
MODIFICATION
AND
COMPOUNDING
OF
INORGANIC
THERMAL
CONDUCTIVE
SILICON
CARBIDE
FILLER
77
VIII
I
CONTENTS
4.1.3
PREPARATION
AND
CHARACTERIZATION
OF
INTRINSIC
POLYMER
WITH
HIGH
THERMAL
CONDUCTIVITY
78
4.2
STUDY
ON
POLYMER
THERMAL
CONDUCTIVE
COMPOSITES
WITH
ORIENTED
STRUCTURE
80
4.2.1
EPOXY
COMPOSITES
FILLED
WITH
BORON
NITRIDE
AND
AMINO
CARBON
NANOTUBES
80
4.2.2
REDUCTION
OF
GRAPHENE
OXIDE
BY
AMINO
FUNCTIONALIZATION/HEXAGONAL
BORON
NITRIDE
84
4.2.3
THE
INTERCONNECTION
THERMAL
CONDUCTIVE
NETWORK
OF
THREE
DIMENSIONAL
STAGGERED
BORON
NITRIDE
SHEET/AMMO-FUNCTIONALIZED
CARBON
NANOTUBES
87
4.3
PREPARATION
OF
THERMAL
CONDUCTIVE
COMPOSITES
WITH
INORGANIC
CERAMIC
SKELETON
STRUCTURE
88
4.3.1
PREPARATION
OF
HOLLOW
BORON
NITRIDE
MICROSPHERES
AND
ITS
EPOXY
RESIN
COMPOSITE
88
4.3.2
THREE-DIMENSIONAL
SKELETON
AND
ITS
EPOXY
RESIN
COMPOSITE
93
4.4
IMPROVED
THERMAL
CONDUCTIVITY
OF
FLUIDS
AND
COMPOSITES
USING
BORON
NITRIDE
NANOPARTICLES
THROUGH
HYDROGEN
BONDING
100
4.4.1
PREPARATION
AND
CHARACTERIZATION
OF
IMPROVED
THERMAL
CONDUCTIVITY
OF
FLUIDS
AND
COMPOSITES
USING
BORON
NITRIDE
NANOPARTICLES
100
4.4.2
DISCUSSION
AND
ANALYSIS
OF
BN
COMPOSITES
AS
THERMAL
INTERFACE
MATERIALS
102
4.5
IMPROVED
THERMAL
CONDUCTIVITY
OF
PEG-BASED
FLUIDS
USING
HYDROGEN
BONDING
AND
LONG
CHAIN
OF
NANOPARTICLE
107
4.5.1
PREPARATION
AND
CHARACTERIZATION
OF
THERMAL
CONDUCTIVITY
OF
PEG-BASED
FLUIDS
USING
HYDROGEN
BONDING
AND
LONG
CHAIN
OF
NANOPARTICLE
107
4.5.2
DISCUSSION
AND
ANALYSIS
OF
PEG-BASED
FLUIDS
USING
HYDROGEN
BONDING
AND
LONG
CHAIN
OF
NANOPARTICLE
109
4.6
CONCLUSION
114
REFERENCES
114
5
OPTIMAL
DESIGN
OF
HIGH
THERMAL
CONDUCTIVE
METAL
SUBSTRATE
SYSTEM
FOR
HIGH-POWER
DEVICES
117
HONG
GUO,
ZHONGNAN
XIE,
AND
DINGBANG
XIONG
5.1
POWER
DEVICES
AND
THERMAL
CONDUCTION
117
5.2
OPTIMIZATION
AND
ADAPTABILITY
DESIGN,
PREPARATION
AND
MODIFICATION
OF
HIGH
THERMAL
CONDUCTIVE
MATRIX
AND
COMPONENTS
120
5.2.1
PREPARATION
AND
THERMAL
CONDUCTIVITY
OF
GR/CU
COMPOSITES
120
5.2.1.1
GR/CU
IN
SITU
COMPOSITE
METHOD
121
5.2.1.2
THERMAL
CONDUCTIVITY
OF
GR/CU
MICRO-NANO-LAMINATED
COMPOSITES
124
5.2.1.3
COEFFICIENT
OF
THERMAL
EXPANSION
OF
COMPOSITE
MATERIALS
126
CONTENTS
|
IX
5.2.2
PREPARATION
AND
THERMAL
CONDUCTIVITY
OF
GRAPHITE/CU
COMPOSITES
130
5.2.2.1
VARIATIONS
IN
THE
INTRINSIC
THERMOPHYSICAL
PROPERTIES
OF
GRAPHITE
SHEETS
DURING
THE
COMPOUNDING
PROCESS
131
5.2.2.2
ORIENTATION
MODULATION
OF
GRAPHITE
SHEETS
IN
COMPOSITES
133
5.2.2.3
EFFECT
OF
GRAPHITE
SHEET
ORIENTATION
ON
THE
THERMAL
CONDUCTIVITY
OF
GRAPHITE/CU
COMPOSITES
136
5.2.3
PREPARATION
AND
THERMAL
CONDUCTIVITY
OF
GRAPHITE/GR/CU
COMPOSITES
136
5.2.3.1
THERMAL
CONDUCTIVITY
OF
GRAPHITE/GR/CU
COMPOSITES
140
5.2.3.2
THERMAL
EXPANSION
COEFFICIENT
OF
GRAPHITE/GR/CU
COMPOSITES
141
5.3
FORMATION
AND
EVOLUTION
RULES
OF
HIGH
THERMAL
CONDUCTIVE
INTERFACE
YY
AND
ITS
CONTROL
METHOD
143
5.3.1
THEORETICAL
CALCULATION
OF
HIGH
THERMAL
CONDUCTIVE
INTERFACE
DESIGN
143
5.3.2
STUDY
ON
INTERFACE
REGULATION
OF
CHROMIUM-MODIFIED
DIAMOND/CU
COMPOSITES
146
5.3.3
STUDY
ON
INTERFACE
REGULATION
OF
BORON-MODIFIED
DIAMOND/CU
COMPOSITES
150
5.3.4
STUDY
ON
INTERFACE
REGULATION
OF
GR-MODIFIED
DIAMOND/CU
COMPOSITES
153
5.4
FORMATION
AND
EVOLUTION
RULES
OF
HIGH
THERMAL
CONDUCTIVE
COMPOSITE
MICROSTRUCTURE
AND
ITS
CONTROL
METHOD
157
5.4.1
CONFIGURATED
DIAMOND/METAL
COMPOSITES
WITH
HIGH
THERMAL
CONDUCTIVITY
157
5.4.2
EFFECT
OF
SECONDARY
DIAMOND
ADDITION
ON
PROPERTIES
OF
COMPOSITES
159
5.4.3
EFFECT
OF
SECONDARY
PARTICLE
SIZE
ON
THE
PROPERTIES
OF
COMPOSITES
160
5.4.4
THERMAL
EXPANSION
BEHAVIOR
OF
COMPOSITE
MATERIALS
WITH
DIFFERENT
THERMAL
CONDUCTIVE
CONFIGURATIONS
161
REFERENCES
162
6
PREPARATION
AND
PERFORMANCE
STUDY
OF
SILICON
NITRIDE
CERAMIC
SUBSTRATE
WITH
HIGH
THERMAL
CONDUCTIVITY
165
YAO
DONGXU,
WANG
WEIDE,
AND
ZENG
YU-PING
6.1
RAPID
NITRIDATION
OF
SILICON
COMPACT
165
6.1.1
RAPID
NITRIDATION
OF
SILICON
COMPACT
165
6.1.1.1
OPTIMIZATION
(YEU)
2
O
3
/MGO
SINTERING
ADDITIVE
167
6.1.1.2
FURTHER
OPTIMIZATION
OF
THE
SRBSN
WITH
2YE5M
AS
SINTERING
ADDITIVE
173
6.2
OPTIMIZATION
OF
SINTERING
AIDS
FOR
HIGH
THERMAL
CONDUCTIVITY
SI
3
N
4
CERAMICS
181
6.2.1
PREPARATION
OF
HIGH
THERMAL
CONDUCTIVITY
SILICON
NITRIDE
CERAMICS
USING
ZRSI
2
AS
A
SINTERING
AID
182
CONTENTS
6.2.1.1
6.2.1.2
6.2.1.3
6.2.1.4
6.2.1.5
REACTION
MECHANISM
OF
ZRSI2
182
EFFECT
OF
ZRSI
2
ON
THE
PHASE
COMPOSITION
185
EFFECT
OF
ZRSI2
ON
MICROSTRUCTURE
186
EFFECT
OF
ZRSI
2
ON
THERMAL
CONDUCTIVITY
188
EFFECT
OF
ZRSI
2
ON
MECHANICAL
PROPERTIES
AND
ELECTRICAL
RESISTIVITY
189
6.2.2
HIGH
THERMAL
CONDUCTIVITY
SI
3
N
4
SINTERED
WITH
YH
2
AS
SINTERING
AID
190
6.2.2.1
6.2.2.2
6.2.2.3
PRE-SINTERING
OF
THE
COMPACT
191
EFFECT
OF
YH
2
ON
THE
DENSIFICATION
AND
WEIGHT
LOSS
194
EFFECT
OF
YH
2
ON
ELEMENTS
DISTRIBUTION
AND
PHASE
COMPOSITION
196
6.2.2.4
6.2.2.5
6.2.2.6
6.2.2.7
EFFECT
OF
YH
2
ON
MICROSTRUCTURE
197
EFFECT
OF
YH
2
ON
THERMAL
CONDUCTIVITY
200
EFFECT
OF
YH
2
ON
MECHANICAL
PROPERTIES
201
DIFFERENCES
IN
THE
EFFECT
OF
DIFFERENT
REH
2
ON
THE
THERMAL
CONDUCTIVITY
OFSILICON
NITRIDE
203
6.3
INVESTIGATION
OF
CU-METALIZED
SI,N4
SUBSTRATES
VIA
ACTIVE
METAL
BRAZING
(AMB)
METHOD
204
6.3.1
EFFECT
OF
BRAZING
TEMPERATURE
ON
THE
PEELING
STRENGTH
OF
CU-METALIZED
SI
3
N
4
SUBSTRATES
204
6.3.2
EFFECT
OF
HOLDING
TIME
ON
THE
PEELING
STRENGTH
OF
CU-METALIZED
CERAMIC
SUBSTRATES
205
6.3.3
EFFECT
OF
BRAZING
BALL
MILLING
TIME
ON
THE
PEELING
STRENGTH
OF
CU-METALIZED
CERAMIC
SUBSTRATES
207
REFERENCES
207
7
PREPARATION
AND
PROPERTIES
OF
THERMAL
INTERFACE
MATERIALS
211
XIAOLIANG
ZENG,
LINLIN
REN,
AND
RONG
SUN
7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.3.1
7.2.3.2
7.2.3.3
7.2.4
CONCEPTION
OF
THERMAL
INTERFACE
MATERIALS
211
POLYMER-BASED
THERMAL
INTERFACE
MATERIALS
214
FILLER
SURFACE
FUNCTIONALIZATION
214
COVALENT
BONDING
AMONG
FILLERS
215
CONSTRUCTION
OF
THERMALLY
CONDUCTIVE
PATHWAYS
215
IN-PLANE
THERMALLY
CONDUCTIVE
PATHWAYS
215
OUT-OF-PLANE
THERMALLY
CONDUCTIVE
PATHWAYS
216
ISOTROPIC
THERMALLY
CONDUCTIVE
PATHWAYS
220
ENHANCE THE
BONDING
FORCE
AND
CONSTRUCT
THERMALLY
CONDUCTIVE
PATHWAYS
221
7.2.4.1
7.2.4.2
7.2.4.3
NON-COVALENT
BONDS
AND
THERMALLY
CONDUCTIVE
PATHWAYS
221
COVALENT
BONDS
AND
THERMALLY
CONDUCTIVE
PATHWAYS
221
WELDING
AND
THERMALLY
CONDUCTIVE
PATHWAYS
223
CONTENTS
XI
7.3
7.4
7.5
7.6
METAL-BASED
THERMAL
INTERFACE
MATERIALS
223
CARBON-BASED
THERMAL
INTERFACE
MATERIALS
229
MOLECULAR
SIMULATION
STUDY
OF
INTERFACIAL
THERMAL
TRANSFER
238
CONCLUSION
240
REFERENCES
241
8
STUDY
ON
SIMULATION
OF
THERMAL
CONDUCTIVE
COMPOSITE
FILLING
THEORY
257
BIN
WU,
PENG
CHEN,
AND
JIASHENG
QIAN
8.1
MOLECULAR
SIMULATION
ALGORITHMS
FOR
THERMAL
CONDUCTIVITY
CALCULATING
257
8.1.1
8.1.2
8.1.3
8.2
8.3
8.4
MD
(GREEN-KUBO)
METHOD
257
NEMD
METHOD
258
E-DPD
METHOD
259
MOLECULAR
SIMULATION
STUDY
ON
POLYMERS
261
MOLECULAR
SIMULATION
STUDY
ON
TC
OF
SI
3
N
4
CERAMIC
265
MOLECULAR
SIMULATION
STUDY
ON
TC
OF
DIAMOND/COPPER
COMPOSITES
268
8.5
8.5.1
8.5.2
SIMULATION
STUDY
ON
POLYMER-BASED
COMPOSITES
270
SIMULATION
ANALYSIS
IN HEAT
TRANSFER
PATHWAYS
CONSTRUCTION
270
SIMULATION
ANALYSIS
OF
LOW
THERMAL
RESISTANCE
INTERFACE
STRUCTURE
CONSTRUCTION
275
8.5.2.1
8.5.2.2
COVALENT
BONDING
CONSTRUCT
INTERFACE
STRUCTURE
275
NON-COVALENT
CONSTRUCT
BONDING
INTERFACE
STRUCTURE
283
REFERENCES
283
9
MARKET
AND
FUTURE
PROSPECTS
OF
HIGH
THERMAL
CONDUCTIVITY
COMPOSITE
MATERIALS
287
CHEN
HONGDA
AND
ZHANG
XU
9.1
9.1.1
9.1.2
9.1.3
9.2
BASIC
CONCEPT
OF
COMPOSITE
MATERIALS
287
THE
HISTORY
OF
COMPOSITE
MATERIALS
287
THE
INTRODUCTION
OF
COMPOSITE
MATERIALS
288
THE
APPLICATION
OF
COMPOSITE
MATERIALS
288
THERMAL
CONDUCTIVITY
MECHANISM
AND
THERMAL
CONDUCTIVITY
MODEL
290
9.2.1
9.2.2
9.2.3
9.2.4
9.3
9.3.1
9.3.2
9.4
ELECTRON
CONDUCTION
MECHANISM
290
PHONON
HEAT
CONDUCTION
MECHANISM
291
THERMAL
CONDUCTION
MECHANISM
291
THERMAL
CONDUCTIVITY
MODEL
293
COMPOSITE
MATERIALS
IN
ELECTRONIC
DEVICES
294
ELECTRONIC
HEAT
DISSIPATION
AND
THERMAL
ADAPTATION
MATERIALS
295
PREPARATION
AND
APPLICATION
OF
THERMALLY
ADAPTIVE
COMPOSITES
296
THERMAL
FUNCTIONAL
COMPOSITES
298
XII
I
CONTENTS
9.4.1
THERMALLY
CONDUCTIVE
COMPOSITES
299
9.4.1.1
REVIEW
OF
THE
LATEST
RESEARCH
PROGRESS
299
9.4.1.2
COMPARATIVE
ANALYSIS
AT
HOME
AND
ABROAD
299
9.4.2
HEAT-RESISTANT
COMPOSITE
MATERIALS
299
9.4.2.1
REVIEW
OF
THE
LATEST
RESEARCH
PROGRESS
299
9.4.2.2
COMPARATIVE
ANALYSIS
AT
HOME
AND
ABROAD
300
9.4.3
THERMAL
STORAGE
COMPOSITES
300
9.4.3.1
REVIEW
OF
THE
LATEST
RESEARCH
PROGRESS
300
9.4.3.2
DOMESTIC
AND
FOREIGN
COMPARATIVE
ANALYSIS
301
9.4.4
APPLICATION
FORESIGHT
301
9.4.5
FUTURE
FORECAST
302
9.5
THE
MODIFICATION
OF
COMPOSITE
MATERIALS
302
9.6
THE
NEW
PACKAGING
MATERIAL
310
9.6.1
THIRD-GENERATION
PACKAGING
MATERIAL-NEAR-NET
SHAPE
OF
HIGH-VOLUME-FRACTION SICP/AL
COMPOSITES
310
9.6.2
FOURTH-GENERATION
ELECTRONIC
PACKAGING
MATERIAL
-
DIAMOND/CU(AI)
COMPOSITE
MATERIAL
311
9.7
THERMAL
MANAGEMENT
OF
ELECTRONIC
DEVICES
312
9.7.1
ELECTRONIC
DEVICE
HEAT
DISSIPATION
TECHNOLOGY
313
9.7.1.1
DIRECT
LIQUID
COOLING
314
9.7.1.2
INDIRECT
LIQUID
COOLING
314
9.7.1.3
LIQUID
JET
COOLING
AND
SPRAYING,
DROP
COOLING
315
9.7.1.4
MICROCHANNEL
HEAT
TRANSFER
MICROCHANNEL
315
9.7.2
PHASE
CHANGE
TEMPERATURE
CONTROL
316
9.7.2.1
INORGANIC
ENERGY
STORAGE
MATERIALS
317
9.7.2.2
ORGANIC
ENERGY
STORAGE
MATERIALS
317
9.8
METHODS
FOR
IMPROVING
THERMAL
CONDUCTIVITY
OF
COMPOSITE
MATERIALS
320
9.8.1
CHOOSE
A REASONABLE
FILLING
AMOUNT
320
9.8.2
CHANGE
THE
STRUCTURE
AND
MORPHOLOGY
OF
THE
FILLING
PHASE
322
9.8.3
CHANGE
THE
SURFACE
MORPHOLOGY
OF
THE
FILLING
PHASE
322
9.8.4
IMPROVING
THE
DISPERSION
FORM
OF
FILLING
PHASE
323
9.9
THE
APPLICATION
OF
COMPOSITE
MATERIALS
324
9.9.1
CLASSIFICATION
OF
POTTING
MATERIALS
324
9.9.2
RESEARCH
STATUS
OF
POTTING
MATERIALS
324
9.9.3
RESEARCH
STATUS
OF
THERMALLY
CONDUCTIVE
POTTING
COMPOSITE
MATERIALS
326
9.9.4
RESEARCH
ON
FILLERS
327
9.9.4.1
THE
EFFECT
OF
FILLER
THERMAL
CONDUCTIVITY
ON
THERMAL
CONDUCTIVITY
327
9.9.4.2
THE
EFFECT
OF
FILLER
PARTICLE
SIZE
ON
THERMAL
CONDUCTIVITY
328
CONTENTS
XIII
9.9.43
EFFECT
OF
FILLER
SURFACE
MODIFICATION
TREATMENT
ON
THERMAL
CONDUCTIVITY
329
9.9.4.4
9.10
EFFECTS
OF
MIXED
PARTICLE-SIZE
FILLERS
ON
THERMAL
CONDUCTIVITY
329
CONCLUSION
329
REFERENCES
330
INDEX
335 |
adam_txt |
CONTENTS
OVERVIEW
OF
WORKS
XV
ACKNOWLEDGMENTS
XVII
1
PHYSICAL
BASIS
OF
THERMAL
CONDUCTION
1
XIAN
ZHANG,
PING
ZHANG,
CHAO
XIAO,
YANYAN
WANG,
XIN
DING,
XIANGLAN
LIU,
AND
XINGYOU
TIAN
1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.2
1.2.1
1.2.2
1.3
1.3.1
1.3.2
1.3.2.1
1.3.2.2
1.3.3
1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.4.5
BASIC
CONCEPTS
AND
LAWS
OF
THERMAL
CONDUCTION
1
DESCRIPTION
OF
TEMPERATURE
FIELD
1
TEMPERATURE
GRADIENT
2
FOURIER
'
S
LAW
2
HEAT
FLUX
DENSITY
FIELD
2
THERMAL
CONDUCTIVITY
3
HEAT
CONDUCTION
DIFFERENTIAL
EQUATION
AND
FINITE
SOLUTION
3
HEAT
CONDUCTION
DIFFERENTIAL
EQUATION
3
DEFINITE
CONDITIONS
5
HEAT
CONDUCTION
MECHANISM
AND
THEORETICAL
CALCULATION
5
GASES
6
SOLIDS
6
METALS
6
INORGANIC
NONMETALS
8
LIQUIDS
11
FACTORS
AFFECTING
THERMAL
CONDUCTIVITY
OF
INORGANIC
NONMETALS
12
TEMPERATURE
12
PRESSURE
13
CRYSTAL
STRUCTURE
14
THERMAL
RESISTANCE
14
OTHERS
15
REFERENCES
15
VI
CONTENTS
2
ELECTRONIC
PACKAGING
MATERIALS
FOR
THERMAL
MANAGEMENT
19
XIAN
ZHANG,
PING
ZHANG,
CHAO
XIAO,
YANYAN
WANG,
XIN
DING,
XIANGLAN
LIU,
AND
XINGYOU
TIAN
2.1
2.1.1
2.1.2
2.1.3
2.2
2.2.1
2.2.2
2.2.3
2.3
2.3.1
2.3.2
2.3.3
2.4
2.4.1
2.4.2
2.4.3
2.4.4
DEFINITION
AND
CLASSIFICATION
OF
ELECTRONIC
PACKAGING
19
DEFINITION
OF
ELECTRONIC
PACKAGING
19
FUNCTIONS
OF
ELECTRONIC
PACKAGING
20
THE
LEVELS
OF
ELECTRONIC
PACKAGING
21
THERMAL
MANAGEMENT
IN
ELECTRONIC
EQUIPMENT
22
THERMAL
SOURCES
22
THERMAL
FAILURE
RATE
23
THE
THERMAL
MANAGEMENT
AT
DIFFERENT
PACKAGE
LEVELS
23
REQUIREMENTS
OF
ELECTRONIC
PACKAGING
MATERIALS
24
THERMAL
INTERFACE
MATERIAL
24
HEAT
DISSIPATION
SUBSTRATE
25
EPOXY
MOLDING
COMPOUND
26
ELECTRONIC
PACKAGING
MATERIALS
27
METAL
MATRIX
PACKAGING
MATERIALS
27
CERAMIC
MATRIX
PACKAGING
MATERIALS
30
POLYMER
MATRIX
PACKAGING
MATERIALS
33
CARBON-CARBON
COMPOSITE
36
REFERENCES
36
3
CHARACTERIZATION
METHODS
FOR
THERMAL
MANAGEMENT
MATERIALS
39
KANG
ZHENG
AND
XINGYOU
TIAN
3.1
OVERVIEW
OF
THE
DEVELOPMENT
OF
THERMAL
CONDUCTIVITY
TEST
METHODS
39
3.2
3.2.1
3.2.2
3.3
3.3.1
3.3.2
3.3.3
3.4
3.4.1
3.4.2
3.4.3
3.5
3.5.1
3.5.1.1
3.5.1.2
3.5.1.3
TEST
METHOD
CLASSIFICATION
AND
STANDARD
SAMPLES
40
STEADY-STATE
MEASUREMENT
METHOD
41
NON-STEADY-STATE
MEASUREMENT
METHOD
42
STEADY-STATE
METHOD
42
LONGITUDINAL
HEAT
FLOW
METHOD
43
GUARDED
HEAT
FLOW
METER
METHOD
44
GUARDED
HOT
PLATE
METHOD
44
NON-STEADY-STATE
METHOD
46
LASER
FLASH
METHOD
46
HOT-WIRE
METHOD
46
TRANSIENT
PLANAR
HEAT
SOURCE
(TPS)
METHOD
47
ELECTRICAL
PROPERTIES
AND
MEASUREMENT
TECHNIQUES
48
ELECTRIC
CONDUCTIVITY
AND
RESISTIVITY
49
TESTING
RESISTIVITY
OF
BULK
MATERIAL
50
FOUR-PROBE
METHOD
50
THE
VAN
DER
PAUW
METHOD
51
CONTENTS
VII
3.5.2
3.6
3.6.1
3.6.2
3.6.2.1
3.6.2.2
3.6.2.3
3.6.3
3.6.4
3.6.5
3.6.6
3.6.7
3.6.8
3.7
3.7.1
3.7.1.1
3.7.1.2
3.7.1.3
3.7.1.4
3.7.2
3.7.2.1
3.7.2.2
3.7.2.3
3.7.2.4
3.7.2.5
3.7.2.6
3.7.2.7
DIELECTRIC
CONSTANT
AND
ITS
CHARACTERIZATION
52
MATERIAL
CHARACTERIZATION
ANALYSIS
TECHNOLOGY
54
OPTICAL
MICROSCOPE
54
X-RAY
DIFFRACTION
55
PHASE
ANALYSIS
56
DETERMINATION
OF
CRYSTALLINITY
56
PRECISE
MEASUREMENT
OF
LATTICE
PARAMETERS
56
SCANNING
ELECTRON
MICROSCOPE
57
TRANSMISSION
ELECTRON
MICROSCOPE
58
SCANNING
ACOUSTIC
MICROSCOPE
60
ATOMIC
FORCE
MICROSCOPE
62
THERMAL
MECHANICAL
ANALYSIS
(TMA)
64
DYNAMIC
MECHANICAL
ANALYSIS
(DMA)
66
RELIABILITY
ANALYSIS
AND
ENVIRONMENTAL
PERFORMANCE
EVALUATION
68
FAILURE
MODES
AND
MECHANISMS
69
RESIDUAL
STRESS
69
STRESS
VOID
70
ADHERENCE
STRENGTH
70
MOISTURE
70
RELIABILITY
CERTIFICATION
71
VISCOSITY
OF
PLASTIC
PACKAGING
MATERIAL
71
THE
MOISTURE
TEST
71
HYGROSCOPIC
STRAIN
AND
HUMIDITY
MEASUREMENT
72
TEMPERATURE
ADAPTABILITY
72
TIGHTNESS
72
DEFECTS
IN
MANUFACTURING
PROCESS
CONTROL
72
QUALITY
CONTROL
PROCEDURE
FOR
HIGH-RELIABILITY PLASTIC
PACKAGING
DEVICES
73
3.7.2.8
3.8
SELECTION
OF
HIGH-RELIABILITY
PLASTIC
PACKAGING
DEVICES
73
CONCLUSION
73
REFERENCES
74
4
CONSTRUCTION
OF
THERMAL
CONDUCTIVITY
NETWORK
AND
PERFORMANCE
OPTIMIZATION
OF
POLYMER
SUBSTRATE
77
HUA
WANG,
XINGYOU
TIAN,
HAIPING
HONG,
HAO
LI,
YANYAN
LIU,
XIAOXIAO
LI,
YUSHENG
DA,
QIANG
LIU,
BIN
YAO,
DING
LOU,
MINGYANG
MAO,
AND
ZHONG
HU
4.1
SYNTHESIS
AND
SURFACE
MODIFICATION
OF
HIGH
THERMAL
CONDUCTIVE
FILLER
AND
THE
SYNTHESIS
OF
SUBSTRATES
77
4.1.1
SYNTHESIS
OF
HEXAGONAL
BORON
NITRIDE
NANOSHEETS
BY
HALIDE-ASSISTED
HYDROTHERMAL
METHOD
AT
LOW
TEMPERATURE
77
4.1.2
MODIFICATION
AND
COMPOUNDING
OF
INORGANIC
THERMAL
CONDUCTIVE
SILICON
CARBIDE
FILLER
77
VIII
I
CONTENTS
4.1.3
PREPARATION
AND
CHARACTERIZATION
OF
INTRINSIC
POLYMER
WITH
HIGH
THERMAL
CONDUCTIVITY
78
4.2
STUDY
ON
POLYMER
THERMAL
CONDUCTIVE
COMPOSITES
WITH
ORIENTED
STRUCTURE
80
4.2.1
EPOXY
COMPOSITES
FILLED
WITH
BORON
NITRIDE
AND
AMINO
CARBON
NANOTUBES
80
4.2.2
REDUCTION
OF
GRAPHENE
OXIDE
BY
AMINO
FUNCTIONALIZATION/HEXAGONAL
BORON
NITRIDE
84
4.2.3
THE
INTERCONNECTION
THERMAL
CONDUCTIVE
NETWORK
OF
THREE
DIMENSIONAL
STAGGERED
BORON
NITRIDE
SHEET/AMMO-FUNCTIONALIZED
CARBON
NANOTUBES
87
4.3
PREPARATION
OF
THERMAL
CONDUCTIVE
COMPOSITES
WITH
INORGANIC
CERAMIC
SKELETON
STRUCTURE
88
4.3.1
PREPARATION
OF
HOLLOW
BORON
NITRIDE
MICROSPHERES
AND
ITS
EPOXY
RESIN
COMPOSITE
88
4.3.2
THREE-DIMENSIONAL
SKELETON
AND
ITS
EPOXY
RESIN
COMPOSITE
93
4.4
IMPROVED
THERMAL
CONDUCTIVITY
OF
FLUIDS
AND
COMPOSITES
USING
BORON
NITRIDE
NANOPARTICLES
THROUGH
HYDROGEN
BONDING
100
4.4.1
PREPARATION
AND
CHARACTERIZATION
OF
IMPROVED
THERMAL
CONDUCTIVITY
OF
FLUIDS
AND
COMPOSITES
USING
BORON
NITRIDE
NANOPARTICLES
100
4.4.2
DISCUSSION
AND
ANALYSIS
OF
BN
COMPOSITES
AS
THERMAL
INTERFACE
MATERIALS
102
4.5
IMPROVED
THERMAL
CONDUCTIVITY
OF
PEG-BASED
FLUIDS
USING
HYDROGEN
BONDING
AND
LONG
CHAIN
OF
NANOPARTICLE
107
4.5.1
PREPARATION
AND
CHARACTERIZATION
OF
THERMAL
CONDUCTIVITY
OF
PEG-BASED
FLUIDS
USING
HYDROGEN
BONDING
AND
LONG
CHAIN
OF
NANOPARTICLE
107
4.5.2
DISCUSSION
AND
ANALYSIS
OF
PEG-BASED
FLUIDS
USING
HYDROGEN
BONDING
AND
LONG
CHAIN
OF
NANOPARTICLE
109
4.6
CONCLUSION
114
REFERENCES
114
5
OPTIMAL
DESIGN
OF
HIGH
THERMAL
CONDUCTIVE
METAL
SUBSTRATE
SYSTEM
FOR
HIGH-POWER
DEVICES
117
HONG
GUO,
ZHONGNAN
XIE,
AND
DINGBANG
XIONG
5.1
POWER
DEVICES
AND
THERMAL
CONDUCTION
117
5.2
OPTIMIZATION
AND
ADAPTABILITY
DESIGN,
PREPARATION
AND
MODIFICATION
OF
HIGH
THERMAL
CONDUCTIVE
MATRIX
AND
COMPONENTS
120
5.2.1
PREPARATION
AND
THERMAL
CONDUCTIVITY
OF
GR/CU
COMPOSITES
120
5.2.1.1
GR/CU
IN
SITU
COMPOSITE
METHOD
121
5.2.1.2
THERMAL
CONDUCTIVITY
OF
GR/CU
MICRO-NANO-LAMINATED
COMPOSITES
124
5.2.1.3
COEFFICIENT
OF
THERMAL
EXPANSION
OF
COMPOSITE
MATERIALS
126
CONTENTS
|
IX
5.2.2
PREPARATION
AND
THERMAL
CONDUCTIVITY
OF
GRAPHITE/CU
COMPOSITES
130
5.2.2.1
VARIATIONS
IN
THE
INTRINSIC
THERMOPHYSICAL
PROPERTIES
OF
GRAPHITE
SHEETS
DURING
THE
COMPOUNDING
PROCESS
131
5.2.2.2
ORIENTATION
MODULATION
OF
GRAPHITE
SHEETS
IN
COMPOSITES
133
5.2.2.3
EFFECT
OF
GRAPHITE
SHEET
ORIENTATION
ON
THE
THERMAL
CONDUCTIVITY
OF
GRAPHITE/CU
COMPOSITES
136
5.2.3
PREPARATION
AND
THERMAL
CONDUCTIVITY
OF
GRAPHITE/GR/CU
COMPOSITES
136
5.2.3.1
THERMAL
CONDUCTIVITY
OF
GRAPHITE/GR/CU
COMPOSITES
140
5.2.3.2
THERMAL
EXPANSION
COEFFICIENT
OF
GRAPHITE/GR/CU
COMPOSITES
141
5.3
FORMATION
AND
EVOLUTION
RULES
OF
HIGH
THERMAL
CONDUCTIVE
INTERFACE
YY
AND
ITS
CONTROL
METHOD
143
5.3.1
THEORETICAL
CALCULATION
OF
HIGH
THERMAL
CONDUCTIVE
INTERFACE
DESIGN
143
5.3.2
STUDY
ON
INTERFACE
REGULATION
OF
CHROMIUM-MODIFIED
DIAMOND/CU
COMPOSITES
146
5.3.3
STUDY
ON
INTERFACE
REGULATION
OF
BORON-MODIFIED
DIAMOND/CU
COMPOSITES
150
5.3.4
STUDY
ON
INTERFACE
REGULATION
OF
GR-MODIFIED
DIAMOND/CU
COMPOSITES
153
5.4
FORMATION
AND
EVOLUTION
RULES
OF
HIGH
THERMAL
CONDUCTIVE
COMPOSITE
MICROSTRUCTURE
AND
ITS
CONTROL
METHOD
157
5.4.1
CONFIGURATED
DIAMOND/METAL
COMPOSITES
WITH
HIGH
THERMAL
CONDUCTIVITY
157
5.4.2
EFFECT
OF
SECONDARY
DIAMOND
ADDITION
ON
PROPERTIES
OF
COMPOSITES
159
5.4.3
EFFECT
OF
SECONDARY
PARTICLE
SIZE
ON
THE
PROPERTIES
OF
COMPOSITES
160
5.4.4
THERMAL
EXPANSION
BEHAVIOR
OF
COMPOSITE
MATERIALS
WITH
DIFFERENT
THERMAL
CONDUCTIVE
CONFIGURATIONS
161
REFERENCES
162
6
PREPARATION
AND
PERFORMANCE
STUDY
OF
SILICON
NITRIDE
CERAMIC
SUBSTRATE
WITH
HIGH
THERMAL
CONDUCTIVITY
165
YAO
DONGXU,
WANG
WEIDE,
AND
ZENG
YU-PING
6.1
RAPID
NITRIDATION
OF
SILICON
COMPACT
165
6.1.1
RAPID
NITRIDATION
OF
SILICON
COMPACT
165
6.1.1.1
OPTIMIZATION
(YEU)
2
O
3
/MGO
SINTERING
ADDITIVE
167
6.1.1.2
FURTHER
OPTIMIZATION
OF
THE
SRBSN
WITH
2YE5M
AS
SINTERING
ADDITIVE
173
6.2
OPTIMIZATION
OF
SINTERING
AIDS
FOR
HIGH
THERMAL
CONDUCTIVITY
SI
3
N
4
CERAMICS
181
6.2.1
PREPARATION
OF
HIGH
THERMAL
CONDUCTIVITY
SILICON
NITRIDE
CERAMICS
USING
ZRSI
2
AS
A
SINTERING
AID
182
CONTENTS
6.2.1.1
6.2.1.2
6.2.1.3
6.2.1.4
6.2.1.5
REACTION
MECHANISM
OF
ZRSI2
182
EFFECT
OF
ZRSI
2
ON
THE
PHASE
COMPOSITION
185
EFFECT
OF
ZRSI2
ON
MICROSTRUCTURE
186
EFFECT
OF
ZRSI
2
ON
THERMAL
CONDUCTIVITY
188
EFFECT
OF
ZRSI
2
ON
MECHANICAL
PROPERTIES
AND
ELECTRICAL
RESISTIVITY
189
6.2.2
HIGH
THERMAL
CONDUCTIVITY
SI
3
N
4
SINTERED
WITH
YH
2
AS
SINTERING
AID
190
6.2.2.1
6.2.2.2
6.2.2.3
PRE-SINTERING
OF
THE
COMPACT
191
EFFECT
OF
YH
2
ON
THE
DENSIFICATION
AND
WEIGHT
LOSS
194
EFFECT
OF
YH
2
ON
ELEMENTS
DISTRIBUTION
AND
PHASE
COMPOSITION
196
6.2.2.4
6.2.2.5
6.2.2.6
6.2.2.7
EFFECT
OF
YH
2
ON
MICROSTRUCTURE
197
EFFECT
OF
YH
2
ON
THERMAL
CONDUCTIVITY
200
EFFECT
OF
YH
2
ON
MECHANICAL
PROPERTIES
201
DIFFERENCES
IN
THE
EFFECT
OF
DIFFERENT
REH
2
ON
THE
THERMAL
CONDUCTIVITY
OFSILICON
NITRIDE
203
6.3
INVESTIGATION
OF
CU-METALIZED
SI,N4
SUBSTRATES
VIA
ACTIVE
METAL
BRAZING
(AMB)
METHOD
204
6.3.1
EFFECT
OF
BRAZING
TEMPERATURE
ON
THE
PEELING
STRENGTH
OF
CU-METALIZED
SI
3
N
4
SUBSTRATES
204
6.3.2
EFFECT
OF
HOLDING
TIME
ON
THE
PEELING
STRENGTH
OF
CU-METALIZED
CERAMIC
SUBSTRATES
205
6.3.3
EFFECT
OF
BRAZING
BALL
MILLING
TIME
ON
THE
PEELING
STRENGTH
OF
CU-METALIZED
CERAMIC
SUBSTRATES
207
REFERENCES
207
7
PREPARATION
AND
PROPERTIES
OF
THERMAL
INTERFACE
MATERIALS
211
XIAOLIANG
ZENG,
LINLIN
REN,
AND
RONG
SUN
7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.3.1
7.2.3.2
7.2.3.3
7.2.4
CONCEPTION
OF
THERMAL
INTERFACE
MATERIALS
211
POLYMER-BASED
THERMAL
INTERFACE
MATERIALS
214
FILLER
SURFACE
FUNCTIONALIZATION
214
COVALENT
BONDING
AMONG
FILLERS
215
CONSTRUCTION
OF
THERMALLY
CONDUCTIVE
PATHWAYS
215
IN-PLANE
THERMALLY
CONDUCTIVE
PATHWAYS
215
OUT-OF-PLANE
THERMALLY
CONDUCTIVE
PATHWAYS
216
ISOTROPIC
THERMALLY
CONDUCTIVE
PATHWAYS
220
ENHANCE THE
BONDING
FORCE
AND
CONSTRUCT
THERMALLY
CONDUCTIVE
PATHWAYS
221
7.2.4.1
7.2.4.2
7.2.4.3
NON-COVALENT
BONDS
AND
THERMALLY
CONDUCTIVE
PATHWAYS
221
COVALENT
BONDS
AND
THERMALLY
CONDUCTIVE
PATHWAYS
221
WELDING
AND
THERMALLY
CONDUCTIVE
PATHWAYS
223
CONTENTS
XI
7.3
7.4
7.5
7.6
METAL-BASED
THERMAL
INTERFACE
MATERIALS
223
CARBON-BASED
THERMAL
INTERFACE
MATERIALS
229
MOLECULAR
SIMULATION
STUDY
OF
INTERFACIAL
THERMAL
TRANSFER
238
CONCLUSION
240
REFERENCES
241
8
STUDY
ON
SIMULATION
OF
THERMAL
CONDUCTIVE
COMPOSITE
FILLING
THEORY
257
BIN
WU,
PENG
CHEN,
AND
JIASHENG
QIAN
8.1
MOLECULAR
SIMULATION
ALGORITHMS
FOR
THERMAL
CONDUCTIVITY
CALCULATING
257
8.1.1
8.1.2
8.1.3
8.2
8.3
8.4
MD
(GREEN-KUBO)
METHOD
257
NEMD
METHOD
258
E-DPD
METHOD
259
MOLECULAR
SIMULATION
STUDY
ON
POLYMERS
261
MOLECULAR
SIMULATION
STUDY
ON
TC
OF
SI
3
N
4
CERAMIC
265
MOLECULAR
SIMULATION
STUDY
ON
TC
OF
DIAMOND/COPPER
COMPOSITES
268
8.5
8.5.1
8.5.2
SIMULATION
STUDY
ON
POLYMER-BASED
COMPOSITES
270
SIMULATION
ANALYSIS
IN HEAT
TRANSFER
PATHWAYS
CONSTRUCTION
270
SIMULATION
ANALYSIS
OF
LOW
THERMAL
RESISTANCE
INTERFACE
STRUCTURE
CONSTRUCTION
275
8.5.2.1
8.5.2.2
COVALENT
BONDING
CONSTRUCT
INTERFACE
STRUCTURE
275
NON-COVALENT
CONSTRUCT
BONDING
INTERFACE
STRUCTURE
283
REFERENCES
283
9
MARKET
AND
FUTURE
PROSPECTS
OF
HIGH
THERMAL
CONDUCTIVITY
COMPOSITE
MATERIALS
287
CHEN
HONGDA
AND
ZHANG
XU
9.1
9.1.1
9.1.2
9.1.3
9.2
BASIC
CONCEPT
OF
COMPOSITE
MATERIALS
287
THE
HISTORY
OF
COMPOSITE
MATERIALS
287
THE
INTRODUCTION
OF
COMPOSITE
MATERIALS
288
THE
APPLICATION
OF
COMPOSITE
MATERIALS
288
THERMAL
CONDUCTIVITY
MECHANISM
AND
THERMAL
CONDUCTIVITY
MODEL
290
9.2.1
9.2.2
9.2.3
9.2.4
9.3
9.3.1
9.3.2
9.4
ELECTRON
CONDUCTION
MECHANISM
290
PHONON
HEAT
CONDUCTION
MECHANISM
291
THERMAL
CONDUCTION
MECHANISM
291
THERMAL
CONDUCTIVITY
MODEL
293
COMPOSITE
MATERIALS
IN
ELECTRONIC
DEVICES
294
ELECTRONIC
HEAT
DISSIPATION
AND
THERMAL
ADAPTATION
MATERIALS
295
PREPARATION
AND
APPLICATION
OF
THERMALLY
ADAPTIVE
COMPOSITES
296
THERMAL
FUNCTIONAL
COMPOSITES
298
XII
I
CONTENTS
9.4.1
THERMALLY
CONDUCTIVE
COMPOSITES
299
9.4.1.1
REVIEW
OF
THE
LATEST
RESEARCH
PROGRESS
299
9.4.1.2
COMPARATIVE
ANALYSIS
AT
HOME
AND
ABROAD
299
9.4.2
HEAT-RESISTANT
COMPOSITE
MATERIALS
299
9.4.2.1
REVIEW
OF
THE
LATEST
RESEARCH
PROGRESS
299
9.4.2.2
COMPARATIVE
ANALYSIS
AT
HOME
AND
ABROAD
300
9.4.3
THERMAL
STORAGE
COMPOSITES
300
9.4.3.1
REVIEW
OF
THE
LATEST
RESEARCH
PROGRESS
300
9.4.3.2
DOMESTIC
AND
FOREIGN
COMPARATIVE
ANALYSIS
301
9.4.4
APPLICATION
FORESIGHT
301
9.4.5
FUTURE
FORECAST
302
9.5
THE
MODIFICATION
OF
COMPOSITE
MATERIALS
302
9.6
THE
NEW
PACKAGING
MATERIAL
310
9.6.1
THIRD-GENERATION
PACKAGING
MATERIAL-NEAR-NET
SHAPE
OF
HIGH-VOLUME-FRACTION SICP/AL
COMPOSITES
310
9.6.2
FOURTH-GENERATION
ELECTRONIC
PACKAGING
MATERIAL
-
DIAMOND/CU(AI)
COMPOSITE
MATERIAL
311
9.7
THERMAL
MANAGEMENT
OF
ELECTRONIC
DEVICES
312
9.7.1
ELECTRONIC
DEVICE
HEAT
DISSIPATION
TECHNOLOGY
313
9.7.1.1
DIRECT
LIQUID
COOLING
314
9.7.1.2
INDIRECT
LIQUID
COOLING
314
9.7.1.3
LIQUID
JET
COOLING
AND
SPRAYING,
DROP
COOLING
315
9.7.1.4
MICROCHANNEL
HEAT
TRANSFER
MICROCHANNEL
315
9.7.2
PHASE
CHANGE
TEMPERATURE
CONTROL
316
9.7.2.1
INORGANIC
ENERGY
STORAGE
MATERIALS
317
9.7.2.2
ORGANIC
ENERGY
STORAGE
MATERIALS
317
9.8
METHODS
FOR
IMPROVING
THERMAL
CONDUCTIVITY
OF
COMPOSITE
MATERIALS
320
9.8.1
CHOOSE
A REASONABLE
FILLING
AMOUNT
320
9.8.2
CHANGE
THE
STRUCTURE
AND
MORPHOLOGY
OF
THE
FILLING
PHASE
322
9.8.3
CHANGE
THE
SURFACE
MORPHOLOGY
OF
THE
FILLING
PHASE
322
9.8.4
IMPROVING
THE
DISPERSION
FORM
OF
FILLING
PHASE
323
9.9
THE
APPLICATION
OF
COMPOSITE
MATERIALS
324
9.9.1
CLASSIFICATION
OF
POTTING
MATERIALS
324
9.9.2
RESEARCH
STATUS
OF
POTTING
MATERIALS
324
9.9.3
RESEARCH
STATUS
OF
THERMALLY
CONDUCTIVE
POTTING
COMPOSITE
MATERIALS
326
9.9.4
RESEARCH
ON
FILLERS
327
9.9.4.1
THE
EFFECT
OF
FILLER
THERMAL
CONDUCTIVITY
ON
THERMAL
CONDUCTIVITY
327
9.9.4.2
THE
EFFECT
OF
FILLER
PARTICLE
SIZE
ON
THERMAL
CONDUCTIVITY
328
CONTENTS
XIII
9.9.43
EFFECT
OF
FILLER
SURFACE
MODIFICATION
TREATMENT
ON
THERMAL
CONDUCTIVITY
329
9.9.4.4
9.10
EFFECTS
OF
MIXED
PARTICLE-SIZE
FILLERS
ON
THERMAL
CONDUCTIVITY
329
CONCLUSION
329
REFERENCES
330
INDEX
335 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Tian, Xingyou |
author2_role | edt |
author2_variant | x t xt |
author_GND | (DE-588)1318850258 |
author_facet | Tian, Xingyou |
building | Verbundindex |
bvnumber | BV049566597 |
classification_rvk | ZN 4192 |
ctrlnum | (OCoLC)1427315846 (DE-599)DNB1294992422 |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000008c 4500</leader><controlfield tag="001">BV049566597</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241128</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">240212s2024 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">23,N28</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1294992422</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527352425</subfield><subfield code="c">: EUR 149.00 (DE) (freier Preis), EUR 153.20 (AT) (freier Preis)</subfield><subfield code="9">978-3-527-35242-5</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527352425</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 1135242 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1427315846</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1294992422</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 4192</subfield><subfield code="0">(DE-625)157372:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">540</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal management materials for electronic packaging</subfield><subfield code="b">preparation, characterization, and devices</subfield><subfield code="c">edited by Xingyou Tian</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvii, 341 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">24.4 cm x 17 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wärmeleitfähigkeit</subfield><subfield code="0">(DE-588)4064191-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Halbleitergehäuse</subfield><subfield code="0">(DE-588)4143472-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Components & Devices</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">EE60: Komponenten u. Bauelemente</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electrical & Electronics Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electronic Materials</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Elektronische Materialien</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Elektrotechnik u. Elektronik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Halbleiterphysik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Komponenten u. Bauelemente</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">MS40: Elektronische Materialien</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Materials Science</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Materialwissenschaften</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">PH62: Halbleiterphysik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Physics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Physik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Semiconductor Physics</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Halbleitergehäuse</subfield><subfield code="0">(DE-588)4143472-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wärmeleitfähigkeit</subfield><subfield code="0">(DE-588)4064191-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Xingyou</subfield><subfield code="0">(DE-588)1318850258</subfield><subfield code="4">edt</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Wiley-VCH</subfield><subfield code="0">(DE-588)16179388-5</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-527-84311-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-527-84310-7</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-527-84312-1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-35242-5/</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034911884&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">vlb</subfield><subfield code="d">20230705</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#vlb</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034911884</subfield></datafield></record></collection> |
id | DE-604.BV049566597 |
illustrated | Illustrated |
index_date | 2024-07-03T23:29:38Z |
indexdate | 2024-11-28T09:01:54Z |
institution | BVB |
institution_GND | (DE-588)16179388-5 |
isbn | 9783527352425 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034911884 |
oclc_num | 1427315846 |
open_access_boolean | |
owner | DE-29T DE-703 |
owner_facet | DE-29T DE-703 |
physical | xvii, 341 Seiten Illustrationen, Diagramme 24.4 cm x 17 cm |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Thermal management materials for electronic packaging preparation, characterization, and devices edited by Xingyou Tian Weinheim Wiley-VCH [2024] xvii, 341 Seiten Illustrationen, Diagramme 24.4 cm x 17 cm txt rdacontent n rdamedia nc rdacarrier Wärmeleitfähigkeit (DE-588)4064191-0 gnd rswk-swf Halbleitergehäuse (DE-588)4143472-9 gnd rswk-swf Components & Devices EE60: Komponenten u. Bauelemente Electrical & Electronics Engineering Electronic Materials Elektronische Materialien Elektrotechnik u. Elektronik Halbleiterphysik Komponenten u. Bauelemente MS40: Elektronische Materialien Materials Science Materialwissenschaften PH62: Halbleiterphysik Physics Physik Semiconductor Physics Halbleitergehäuse (DE-588)4143472-9 s Wärmeleitfähigkeit (DE-588)4064191-0 s DE-604 Tian, Xingyou (DE-588)1318850258 edt Wiley-VCH (DE-588)16179388-5 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-527-84311-4 Erscheint auch als Online-Ausgabe, EPUB 978-3-527-84310-7 Erscheint auch als Online-Ausgabe 978-3-527-84312-1 X:MVB http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-35242-5/ DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034911884&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p vlb 20230705 DE-101 https://d-nb.info/provenance/plan#vlb |
spellingShingle | Thermal management materials for electronic packaging preparation, characterization, and devices Wärmeleitfähigkeit (DE-588)4064191-0 gnd Halbleitergehäuse (DE-588)4143472-9 gnd |
subject_GND | (DE-588)4064191-0 (DE-588)4143472-9 |
title | Thermal management materials for electronic packaging preparation, characterization, and devices |
title_auth | Thermal management materials for electronic packaging preparation, characterization, and devices |
title_exact_search | Thermal management materials for electronic packaging preparation, characterization, and devices |
title_exact_search_txtP | Thermal management materials for electronic packaging preparation, characterization, and devices |
title_full | Thermal management materials for electronic packaging preparation, characterization, and devices edited by Xingyou Tian |
title_fullStr | Thermal management materials for electronic packaging preparation, characterization, and devices edited by Xingyou Tian |
title_full_unstemmed | Thermal management materials for electronic packaging preparation, characterization, and devices edited by Xingyou Tian |
title_short | Thermal management materials for electronic packaging |
title_sort | thermal management materials for electronic packaging preparation characterization and devices |
title_sub | preparation, characterization, and devices |
topic | Wärmeleitfähigkeit (DE-588)4064191-0 gnd Halbleitergehäuse (DE-588)4143472-9 gnd |
topic_facet | Wärmeleitfähigkeit Halbleitergehäuse |
url | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-35242-5/ http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034911884&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT tianxingyou thermalmanagementmaterialsforelectronicpackagingpreparationcharacterizationanddevices AT wileyvch thermalmanagementmaterialsforelectronicpackagingpreparationcharacterizationanddevices |