Eye Tracking and Visual Analytics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Aalborg
River Publishers
2021
|
Ausgabe: | 1st ed |
Schlagworte: | |
Online-Zugang: | KUBA1 |
Beschreibung: | Description based on publisher supplied metadata and other sources |
Beschreibung: | 1 Online-Ressource (382 pages) |
ISBN: | 9788770224321 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV049560797 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 240208s2021 |||| o||u| ||||||eng d | ||
020 | |a 9788770224321 |9 978-87-7022-432-1 | ||
035 | |a (ZDB-30-PQE)EBC29002975 | ||
035 | |a (ZDB-30-PAD)EBC29002975 | ||
035 | |a (ZDB-89-EBL)EBL29002975 | ||
035 | |a (OCoLC)1290484639 | ||
035 | |a (DE-599)BVBBV049560797 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-Y3 | ||
082 | 0 | |a 001.4226 | |
100 | 1 | |a Burch, Michael |e Verfasser |4 aut | |
245 | 1 | 0 | |a Eye Tracking and Visual Analytics |
250 | |a 1st ed | ||
264 | 1 | |a Aalborg |b River Publishers |c 2021 | |
264 | 4 | |c ©2021 | |
300 | |a 1 Online-Ressource (382 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Description based on publisher supplied metadata and other sources | ||
505 | 8 | |a Front Cover -- Eye Tracking and Visual Analytics -- Contents -- Preface -- List of Figures -- List of Tables -- List of Abbreviations -- 1 Introduction -- 1.1 Tasks, Hypotheses, and Human Observers -- 1.2 Synergy Effects -- 1.3 Dynamic Visual Analytics -- 2 Visualization -- 2.1 Motivating Examples -- 2.2 Historical Background -- 2.2.1 Early Forms of Visualizations -- 2.2.2 The Age of Cartographic Maps -- 2.2.3 Visualization During Industrialization -- 2.2.4 After the Invention of the Computer -- 2.2.5 Visualization Today -- 2.3 Data Types and Visual Encodings -- 2.3.1 Primitive Data -- 2.3.2 Complex Data -- 2.3.3 Mixture of Data -- 2.3.4 Dynamic Data -- 2.3.5 Metadata -- 2.4 Interaction Techniques -- 2.4.1 Interaction Categories -- 2.4.2 Physical Devices -- 2.4.3 Users-in-the-Loop -- 2.5 Design Principles -- 2.5.1 Visual Enhancements and Decorations -- 2.5.2 Visual Structuring and Organization -- 2.5.3 General Design Flaws -- 2.5.4 Gestalt Laws -- 2.5.5 Optical Illusions -- 3 Visual Analytics -- 3.1 Key Concepts -- 3.1.1 Origin and First Stages -- 3.1.2 Data Handling and Management -- 3.1.3 System Ingredients Around the Data -- 3.1.4 Involved Research Fields and Future Perspectives -- 3.2 Visual Analytics Pipeline -- 3.2.1 Data Basis and Runtimes -- 3.2.2 Patterns, Correlations, and Rules -- 3.2.3 Tasks and Hypotheses -- 3.2.4 Refinements and Adaptations -- 3.2.5 Insights and Knowledge -- 3.3 Challenges of Algorithmic Concepts -- 3.3.1 Algorithm Classes -- 3.3.2 Parameter Specifications -- 3.3.3 Algorithmic Runtime Complexities -- 3.3.4 Performance Evaluation -- 3.3.5 Insights into the Running Algorithm -- 3.4 Applications -- 3.4.1 Dynamic Graphs -- 3.4.2 Digital and Computational Pathology -- 3.4.3 Malware Analysis -- 3.4.4 Video Data Analysis -- 3.4.5 Eye Movement Data -- 4 User Evaluation -- 4.1 Study Types -- 4.1.1 Pilot vs. Real Study | |
505 | 8 | |a 4.1.2 Quantitative vs. Qualitative -- 4.1.3 Controlled vs. Uncontrolled -- 4.1.4 Expert vs. Non-Expert -- 4.1.5 Short-term vs. Longitudinal -- 4.1.6 Limited-number Population vs. Crowdsourcing -- 4.1.7 Field vs. Lab -- 4.1.8 With vs. Without Eye Tracking -- 4.2 Human Users -- 4.2.1 Level of Expertise -- 4.2.2 Age Groups -- 4.2.3 Cultural Differences -- 4.2.4 Vision Deficiencies -- 4.2.5 Ethical Guidelines -- 4.3 Study Design and Ingredients -- 4.3.1 Hypotheses and Research Questions -- 4.3.2 Visual Stimuli -- 4.3.3 Tasks -- 4.3.4 Independent and Dependent Variables -- 4.3.5 Experimenter -- 4.4 Statistical Evaluation and Visual Results -- 4.4.1 Data Preparation and Descriptive Statistics -- 4.4.2 Statistical Tests and Inferential Statistics -- 4.4.3 Visual Representation of the Study Results -- 4.5 Example User Studies Without Eye Tracking -- 4.5.1 Hierarchy Visualization Studies -- 4.5.2 Graph Visualization Studies -- 4.5.3 Interaction Technique Studies -- 4.5.4 Visual Analytics Studies -- 5 Eye Tracking -- 5.1 The Eye -- 5.1.1 Eye Anatomy -- 5.1.2 Eye Movement and Smooth Pursuit -- 5.1.3 Disorders and Diseases Influencing Eye Tracking -- 5.1.4 Corrected-to-Normal Vision -- 5.2 Eye Tracking History -- 5.2.1 The Early Days -- 5.2.2 Progress in the Field -- 5.2.3 Eye Tracking Today -- 5.2.4 Companies, Technologies, and Devices -- 5.2.5 Application Fields -- 5.3 Eye Tracking Data Properties -- 5.3.1 Visual Stimuli -- 5.3.2 Gaze Points, Fixations, Saccades, and Scanpaths -- 5.3.3 Areas of Interest (AOIs) and Transitions -- 5.3.4 Physiological and Additional Measures -- 5.3.5 Derived Metrics -- 5.4 Examples of Eye Tracking Studies -- 5.4.1 Eye Tracking for Static Visualizations -- 5.4.2 Eye Tracking for Interaction Techniques -- 5.4.3 Eye Tracking for Text/Label/Code Reading -- 5.4.4 Eye Tracking for User Interfaces | |
505 | 8 | |a 5.4.5 Eye Tracking for Visual Analytics -- 6 Eye Tracking Data Analytics -- 6.1 Data Preparation -- 6.1.1 Data Collection and Acquisition -- 6.1.2 Organization and Relevance -- 6.1.3 Data Annotation and Anonymization -- 6.1.4 Data Interpretation -- 6.1.5 Data Linking -- 6.2 Data Storage, Adaptation, and Transformation -- 6.2.1 Data Storage -- 6.2.2 Validation, Verification, and Cleaning -- 6.2.3 Data Enhancement and Enrichment -- 6.2.4 Data Transformation -- 6.3 Algorithmic Analyses -- 6.3.1 Ordering and Sorting -- 6.3.2 Data Clustering -- 6.3.3 Summarization, Classing, and Classification -- 6.3.4 Normalization and Aggregation -- 6.3.5 Projection and Dimensionality Reduction -- 6.3.6 Correlation and Trend Analysis -- 6.3.7 Pairwise or Multiple Sequence Alignment -- 6.3.8 Artificial Intelligence-Related Approaches -- 6.4 Visualization Techniques and Visual Analytics -- 6.4.1 Statistical Plots -- 6.4.2 Point-based Visualization Techniques -- 6.4.3 AOI-based Visualization Techniques -- 6.4.4 Eye Tracking Visual Analytics -- 7 Open Challenges, Problems, and Difficulties -- 7.1 Eye Tracking Challenges -- 7.2 Eye Tracking Visual Analytics Challenges -- References -- Index -- About the Author -- Back Cover | |
650 | 4 | |a Visual analytics | |
650 | 4 | |a Information visualization | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Burch, Michael |t Eye Tracking and Visual Analytics |d Aalborg : River Publishers,c2021 |
912 | |a ZDB-30-PAD | ||
940 | 1 | |q KUBA1-ZDB-30-PAD-2023 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-034906251 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/khifiit/detail.action?docID=29002975 |l KUBA1 |p ZDB-30-PAD |q KHI |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804186412142034944 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Burch, Michael |
author_facet | Burch, Michael |
author_role | aut |
author_sort | Burch, Michael |
author_variant | m b mb |
building | Verbundindex |
bvnumber | BV049560797 |
collection | ZDB-30-PAD |
contents | Front Cover -- Eye Tracking and Visual Analytics -- Contents -- Preface -- List of Figures -- List of Tables -- List of Abbreviations -- 1 Introduction -- 1.1 Tasks, Hypotheses, and Human Observers -- 1.2 Synergy Effects -- 1.3 Dynamic Visual Analytics -- 2 Visualization -- 2.1 Motivating Examples -- 2.2 Historical Background -- 2.2.1 Early Forms of Visualizations -- 2.2.2 The Age of Cartographic Maps -- 2.2.3 Visualization During Industrialization -- 2.2.4 After the Invention of the Computer -- 2.2.5 Visualization Today -- 2.3 Data Types and Visual Encodings -- 2.3.1 Primitive Data -- 2.3.2 Complex Data -- 2.3.3 Mixture of Data -- 2.3.4 Dynamic Data -- 2.3.5 Metadata -- 2.4 Interaction Techniques -- 2.4.1 Interaction Categories -- 2.4.2 Physical Devices -- 2.4.3 Users-in-the-Loop -- 2.5 Design Principles -- 2.5.1 Visual Enhancements and Decorations -- 2.5.2 Visual Structuring and Organization -- 2.5.3 General Design Flaws -- 2.5.4 Gestalt Laws -- 2.5.5 Optical Illusions -- 3 Visual Analytics -- 3.1 Key Concepts -- 3.1.1 Origin and First Stages -- 3.1.2 Data Handling and Management -- 3.1.3 System Ingredients Around the Data -- 3.1.4 Involved Research Fields and Future Perspectives -- 3.2 Visual Analytics Pipeline -- 3.2.1 Data Basis and Runtimes -- 3.2.2 Patterns, Correlations, and Rules -- 3.2.3 Tasks and Hypotheses -- 3.2.4 Refinements and Adaptations -- 3.2.5 Insights and Knowledge -- 3.3 Challenges of Algorithmic Concepts -- 3.3.1 Algorithm Classes -- 3.3.2 Parameter Specifications -- 3.3.3 Algorithmic Runtime Complexities -- 3.3.4 Performance Evaluation -- 3.3.5 Insights into the Running Algorithm -- 3.4 Applications -- 3.4.1 Dynamic Graphs -- 3.4.2 Digital and Computational Pathology -- 3.4.3 Malware Analysis -- 3.4.4 Video Data Analysis -- 3.4.5 Eye Movement Data -- 4 User Evaluation -- 4.1 Study Types -- 4.1.1 Pilot vs. Real Study 4.1.2 Quantitative vs. Qualitative -- 4.1.3 Controlled vs. Uncontrolled -- 4.1.4 Expert vs. Non-Expert -- 4.1.5 Short-term vs. Longitudinal -- 4.1.6 Limited-number Population vs. Crowdsourcing -- 4.1.7 Field vs. Lab -- 4.1.8 With vs. Without Eye Tracking -- 4.2 Human Users -- 4.2.1 Level of Expertise -- 4.2.2 Age Groups -- 4.2.3 Cultural Differences -- 4.2.4 Vision Deficiencies -- 4.2.5 Ethical Guidelines -- 4.3 Study Design and Ingredients -- 4.3.1 Hypotheses and Research Questions -- 4.3.2 Visual Stimuli -- 4.3.3 Tasks -- 4.3.4 Independent and Dependent Variables -- 4.3.5 Experimenter -- 4.4 Statistical Evaluation and Visual Results -- 4.4.1 Data Preparation and Descriptive Statistics -- 4.4.2 Statistical Tests and Inferential Statistics -- 4.4.3 Visual Representation of the Study Results -- 4.5 Example User Studies Without Eye Tracking -- 4.5.1 Hierarchy Visualization Studies -- 4.5.2 Graph Visualization Studies -- 4.5.3 Interaction Technique Studies -- 4.5.4 Visual Analytics Studies -- 5 Eye Tracking -- 5.1 The Eye -- 5.1.1 Eye Anatomy -- 5.1.2 Eye Movement and Smooth Pursuit -- 5.1.3 Disorders and Diseases Influencing Eye Tracking -- 5.1.4 Corrected-to-Normal Vision -- 5.2 Eye Tracking History -- 5.2.1 The Early Days -- 5.2.2 Progress in the Field -- 5.2.3 Eye Tracking Today -- 5.2.4 Companies, Technologies, and Devices -- 5.2.5 Application Fields -- 5.3 Eye Tracking Data Properties -- 5.3.1 Visual Stimuli -- 5.3.2 Gaze Points, Fixations, Saccades, and Scanpaths -- 5.3.3 Areas of Interest (AOIs) and Transitions -- 5.3.4 Physiological and Additional Measures -- 5.3.5 Derived Metrics -- 5.4 Examples of Eye Tracking Studies -- 5.4.1 Eye Tracking for Static Visualizations -- 5.4.2 Eye Tracking for Interaction Techniques -- 5.4.3 Eye Tracking for Text/Label/Code Reading -- 5.4.4 Eye Tracking for User Interfaces 5.4.5 Eye Tracking for Visual Analytics -- 6 Eye Tracking Data Analytics -- 6.1 Data Preparation -- 6.1.1 Data Collection and Acquisition -- 6.1.2 Organization and Relevance -- 6.1.3 Data Annotation and Anonymization -- 6.1.4 Data Interpretation -- 6.1.5 Data Linking -- 6.2 Data Storage, Adaptation, and Transformation -- 6.2.1 Data Storage -- 6.2.2 Validation, Verification, and Cleaning -- 6.2.3 Data Enhancement and Enrichment -- 6.2.4 Data Transformation -- 6.3 Algorithmic Analyses -- 6.3.1 Ordering and Sorting -- 6.3.2 Data Clustering -- 6.3.3 Summarization, Classing, and Classification -- 6.3.4 Normalization and Aggregation -- 6.3.5 Projection and Dimensionality Reduction -- 6.3.6 Correlation and Trend Analysis -- 6.3.7 Pairwise or Multiple Sequence Alignment -- 6.3.8 Artificial Intelligence-Related Approaches -- 6.4 Visualization Techniques and Visual Analytics -- 6.4.1 Statistical Plots -- 6.4.2 Point-based Visualization Techniques -- 6.4.3 AOI-based Visualization Techniques -- 6.4.4 Eye Tracking Visual Analytics -- 7 Open Challenges, Problems, and Difficulties -- 7.1 Eye Tracking Challenges -- 7.2 Eye Tracking Visual Analytics Challenges -- References -- Index -- About the Author -- Back Cover |
ctrlnum | (ZDB-30-PQE)EBC29002975 (ZDB-30-PAD)EBC29002975 (ZDB-89-EBL)EBL29002975 (OCoLC)1290484639 (DE-599)BVBBV049560797 |
dewey-full | 001.4226 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 001 - Knowledge |
dewey-raw | 001.4226 |
dewey-search | 001.4226 |
dewey-sort | 11.4226 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Allgemeines |
discipline_str_mv | Allgemeines |
edition | 1st ed |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06379nmm a2200445zc 4500</leader><controlfield tag="001">BV049560797</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240208s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9788770224321</subfield><subfield code="9">978-87-7022-432-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC29002975</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC29002975</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL29002975</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1290484639</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049560797</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-Y3</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">001.4226</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Burch, Michael</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Eye Tracking and Visual Analytics</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Aalborg</subfield><subfield code="b">River Publishers</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (382 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Front Cover -- Eye Tracking and Visual Analytics -- Contents -- Preface -- List of Figures -- List of Tables -- List of Abbreviations -- 1 Introduction -- 1.1 Tasks, Hypotheses, and Human Observers -- 1.2 Synergy Effects -- 1.3 Dynamic Visual Analytics -- 2 Visualization -- 2.1 Motivating Examples -- 2.2 Historical Background -- 2.2.1 Early Forms of Visualizations -- 2.2.2 The Age of Cartographic Maps -- 2.2.3 Visualization During Industrialization -- 2.2.4 After the Invention of the Computer -- 2.2.5 Visualization Today -- 2.3 Data Types and Visual Encodings -- 2.3.1 Primitive Data -- 2.3.2 Complex Data -- 2.3.3 Mixture of Data -- 2.3.4 Dynamic Data -- 2.3.5 Metadata -- 2.4 Interaction Techniques -- 2.4.1 Interaction Categories -- 2.4.2 Physical Devices -- 2.4.3 Users-in-the-Loop -- 2.5 Design Principles -- 2.5.1 Visual Enhancements and Decorations -- 2.5.2 Visual Structuring and Organization -- 2.5.3 General Design Flaws -- 2.5.4 Gestalt Laws -- 2.5.5 Optical Illusions -- 3 Visual Analytics -- 3.1 Key Concepts -- 3.1.1 Origin and First Stages -- 3.1.2 Data Handling and Management -- 3.1.3 System Ingredients Around the Data -- 3.1.4 Involved Research Fields and Future Perspectives -- 3.2 Visual Analytics Pipeline -- 3.2.1 Data Basis and Runtimes -- 3.2.2 Patterns, Correlations, and Rules -- 3.2.3 Tasks and Hypotheses -- 3.2.4 Refinements and Adaptations -- 3.2.5 Insights and Knowledge -- 3.3 Challenges of Algorithmic Concepts -- 3.3.1 Algorithm Classes -- 3.3.2 Parameter Specifications -- 3.3.3 Algorithmic Runtime Complexities -- 3.3.4 Performance Evaluation -- 3.3.5 Insights into the Running Algorithm -- 3.4 Applications -- 3.4.1 Dynamic Graphs -- 3.4.2 Digital and Computational Pathology -- 3.4.3 Malware Analysis -- 3.4.4 Video Data Analysis -- 3.4.5 Eye Movement Data -- 4 User Evaluation -- 4.1 Study Types -- 4.1.1 Pilot vs. Real Study</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.1.2 Quantitative vs. Qualitative -- 4.1.3 Controlled vs. Uncontrolled -- 4.1.4 Expert vs. Non-Expert -- 4.1.5 Short-term vs. Longitudinal -- 4.1.6 Limited-number Population vs. Crowdsourcing -- 4.1.7 Field vs. Lab -- 4.1.8 With vs. Without Eye Tracking -- 4.2 Human Users -- 4.2.1 Level of Expertise -- 4.2.2 Age Groups -- 4.2.3 Cultural Differences -- 4.2.4 Vision Deficiencies -- 4.2.5 Ethical Guidelines -- 4.3 Study Design and Ingredients -- 4.3.1 Hypotheses and Research Questions -- 4.3.2 Visual Stimuli -- 4.3.3 Tasks -- 4.3.4 Independent and Dependent Variables -- 4.3.5 Experimenter -- 4.4 Statistical Evaluation and Visual Results -- 4.4.1 Data Preparation and Descriptive Statistics -- 4.4.2 Statistical Tests and Inferential Statistics -- 4.4.3 Visual Representation of the Study Results -- 4.5 Example User Studies Without Eye Tracking -- 4.5.1 Hierarchy Visualization Studies -- 4.5.2 Graph Visualization Studies -- 4.5.3 Interaction Technique Studies -- 4.5.4 Visual Analytics Studies -- 5 Eye Tracking -- 5.1 The Eye -- 5.1.1 Eye Anatomy -- 5.1.2 Eye Movement and Smooth Pursuit -- 5.1.3 Disorders and Diseases Influencing Eye Tracking -- 5.1.4 Corrected-to-Normal Vision -- 5.2 Eye Tracking History -- 5.2.1 The Early Days -- 5.2.2 Progress in the Field -- 5.2.3 Eye Tracking Today -- 5.2.4 Companies, Technologies, and Devices -- 5.2.5 Application Fields -- 5.3 Eye Tracking Data Properties -- 5.3.1 Visual Stimuli -- 5.3.2 Gaze Points, Fixations, Saccades, and Scanpaths -- 5.3.3 Areas of Interest (AOIs) and Transitions -- 5.3.4 Physiological and Additional Measures -- 5.3.5 Derived Metrics -- 5.4 Examples of Eye Tracking Studies -- 5.4.1 Eye Tracking for Static Visualizations -- 5.4.2 Eye Tracking for Interaction Techniques -- 5.4.3 Eye Tracking for Text/Label/Code Reading -- 5.4.4 Eye Tracking for User Interfaces</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.4.5 Eye Tracking for Visual Analytics -- 6 Eye Tracking Data Analytics -- 6.1 Data Preparation -- 6.1.1 Data Collection and Acquisition -- 6.1.2 Organization and Relevance -- 6.1.3 Data Annotation and Anonymization -- 6.1.4 Data Interpretation -- 6.1.5 Data Linking -- 6.2 Data Storage, Adaptation, and Transformation -- 6.2.1 Data Storage -- 6.2.2 Validation, Verification, and Cleaning -- 6.2.3 Data Enhancement and Enrichment -- 6.2.4 Data Transformation -- 6.3 Algorithmic Analyses -- 6.3.1 Ordering and Sorting -- 6.3.2 Data Clustering -- 6.3.3 Summarization, Classing, and Classification -- 6.3.4 Normalization and Aggregation -- 6.3.5 Projection and Dimensionality Reduction -- 6.3.6 Correlation and Trend Analysis -- 6.3.7 Pairwise or Multiple Sequence Alignment -- 6.3.8 Artificial Intelligence-Related Approaches -- 6.4 Visualization Techniques and Visual Analytics -- 6.4.1 Statistical Plots -- 6.4.2 Point-based Visualization Techniques -- 6.4.3 AOI-based Visualization Techniques -- 6.4.4 Eye Tracking Visual Analytics -- 7 Open Challenges, Problems, and Difficulties -- 7.1 Eye Tracking Challenges -- 7.2 Eye Tracking Visual Analytics Challenges -- References -- Index -- About the Author -- Back Cover</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Visual analytics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Information visualization</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Burch, Michael</subfield><subfield code="t">Eye Tracking and Visual Analytics</subfield><subfield code="d">Aalborg : River Publishers,c2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PAD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">KUBA1-ZDB-30-PAD-2023</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034906251</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/khifiit/detail.action?docID=29002975</subfield><subfield code="l">KUBA1</subfield><subfield code="p">ZDB-30-PAD</subfield><subfield code="q">KHI</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049560797 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:28:34Z |
indexdate | 2024-07-10T10:10:43Z |
institution | BVB |
isbn | 9788770224321 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034906251 |
oclc_num | 1290484639 |
open_access_boolean | |
owner | DE-Y3 |
owner_facet | DE-Y3 |
physical | 1 Online-Ressource (382 pages) |
psigel | ZDB-30-PAD KUBA1-ZDB-30-PAD-2023 ZDB-30-PAD KHI |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | River Publishers |
record_format | marc |
spelling | Burch, Michael Verfasser aut Eye Tracking and Visual Analytics 1st ed Aalborg River Publishers 2021 ©2021 1 Online-Ressource (382 pages) txt rdacontent c rdamedia cr rdacarrier Description based on publisher supplied metadata and other sources Front Cover -- Eye Tracking and Visual Analytics -- Contents -- Preface -- List of Figures -- List of Tables -- List of Abbreviations -- 1 Introduction -- 1.1 Tasks, Hypotheses, and Human Observers -- 1.2 Synergy Effects -- 1.3 Dynamic Visual Analytics -- 2 Visualization -- 2.1 Motivating Examples -- 2.2 Historical Background -- 2.2.1 Early Forms of Visualizations -- 2.2.2 The Age of Cartographic Maps -- 2.2.3 Visualization During Industrialization -- 2.2.4 After the Invention of the Computer -- 2.2.5 Visualization Today -- 2.3 Data Types and Visual Encodings -- 2.3.1 Primitive Data -- 2.3.2 Complex Data -- 2.3.3 Mixture of Data -- 2.3.4 Dynamic Data -- 2.3.5 Metadata -- 2.4 Interaction Techniques -- 2.4.1 Interaction Categories -- 2.4.2 Physical Devices -- 2.4.3 Users-in-the-Loop -- 2.5 Design Principles -- 2.5.1 Visual Enhancements and Decorations -- 2.5.2 Visual Structuring and Organization -- 2.5.3 General Design Flaws -- 2.5.4 Gestalt Laws -- 2.5.5 Optical Illusions -- 3 Visual Analytics -- 3.1 Key Concepts -- 3.1.1 Origin and First Stages -- 3.1.2 Data Handling and Management -- 3.1.3 System Ingredients Around the Data -- 3.1.4 Involved Research Fields and Future Perspectives -- 3.2 Visual Analytics Pipeline -- 3.2.1 Data Basis and Runtimes -- 3.2.2 Patterns, Correlations, and Rules -- 3.2.3 Tasks and Hypotheses -- 3.2.4 Refinements and Adaptations -- 3.2.5 Insights and Knowledge -- 3.3 Challenges of Algorithmic Concepts -- 3.3.1 Algorithm Classes -- 3.3.2 Parameter Specifications -- 3.3.3 Algorithmic Runtime Complexities -- 3.3.4 Performance Evaluation -- 3.3.5 Insights into the Running Algorithm -- 3.4 Applications -- 3.4.1 Dynamic Graphs -- 3.4.2 Digital and Computational Pathology -- 3.4.3 Malware Analysis -- 3.4.4 Video Data Analysis -- 3.4.5 Eye Movement Data -- 4 User Evaluation -- 4.1 Study Types -- 4.1.1 Pilot vs. Real Study 4.1.2 Quantitative vs. Qualitative -- 4.1.3 Controlled vs. Uncontrolled -- 4.1.4 Expert vs. Non-Expert -- 4.1.5 Short-term vs. Longitudinal -- 4.1.6 Limited-number Population vs. Crowdsourcing -- 4.1.7 Field vs. Lab -- 4.1.8 With vs. Without Eye Tracking -- 4.2 Human Users -- 4.2.1 Level of Expertise -- 4.2.2 Age Groups -- 4.2.3 Cultural Differences -- 4.2.4 Vision Deficiencies -- 4.2.5 Ethical Guidelines -- 4.3 Study Design and Ingredients -- 4.3.1 Hypotheses and Research Questions -- 4.3.2 Visual Stimuli -- 4.3.3 Tasks -- 4.3.4 Independent and Dependent Variables -- 4.3.5 Experimenter -- 4.4 Statistical Evaluation and Visual Results -- 4.4.1 Data Preparation and Descriptive Statistics -- 4.4.2 Statistical Tests and Inferential Statistics -- 4.4.3 Visual Representation of the Study Results -- 4.5 Example User Studies Without Eye Tracking -- 4.5.1 Hierarchy Visualization Studies -- 4.5.2 Graph Visualization Studies -- 4.5.3 Interaction Technique Studies -- 4.5.4 Visual Analytics Studies -- 5 Eye Tracking -- 5.1 The Eye -- 5.1.1 Eye Anatomy -- 5.1.2 Eye Movement and Smooth Pursuit -- 5.1.3 Disorders and Diseases Influencing Eye Tracking -- 5.1.4 Corrected-to-Normal Vision -- 5.2 Eye Tracking History -- 5.2.1 The Early Days -- 5.2.2 Progress in the Field -- 5.2.3 Eye Tracking Today -- 5.2.4 Companies, Technologies, and Devices -- 5.2.5 Application Fields -- 5.3 Eye Tracking Data Properties -- 5.3.1 Visual Stimuli -- 5.3.2 Gaze Points, Fixations, Saccades, and Scanpaths -- 5.3.3 Areas of Interest (AOIs) and Transitions -- 5.3.4 Physiological and Additional Measures -- 5.3.5 Derived Metrics -- 5.4 Examples of Eye Tracking Studies -- 5.4.1 Eye Tracking for Static Visualizations -- 5.4.2 Eye Tracking for Interaction Techniques -- 5.4.3 Eye Tracking for Text/Label/Code Reading -- 5.4.4 Eye Tracking for User Interfaces 5.4.5 Eye Tracking for Visual Analytics -- 6 Eye Tracking Data Analytics -- 6.1 Data Preparation -- 6.1.1 Data Collection and Acquisition -- 6.1.2 Organization and Relevance -- 6.1.3 Data Annotation and Anonymization -- 6.1.4 Data Interpretation -- 6.1.5 Data Linking -- 6.2 Data Storage, Adaptation, and Transformation -- 6.2.1 Data Storage -- 6.2.2 Validation, Verification, and Cleaning -- 6.2.3 Data Enhancement and Enrichment -- 6.2.4 Data Transformation -- 6.3 Algorithmic Analyses -- 6.3.1 Ordering and Sorting -- 6.3.2 Data Clustering -- 6.3.3 Summarization, Classing, and Classification -- 6.3.4 Normalization and Aggregation -- 6.3.5 Projection and Dimensionality Reduction -- 6.3.6 Correlation and Trend Analysis -- 6.3.7 Pairwise or Multiple Sequence Alignment -- 6.3.8 Artificial Intelligence-Related Approaches -- 6.4 Visualization Techniques and Visual Analytics -- 6.4.1 Statistical Plots -- 6.4.2 Point-based Visualization Techniques -- 6.4.3 AOI-based Visualization Techniques -- 6.4.4 Eye Tracking Visual Analytics -- 7 Open Challenges, Problems, and Difficulties -- 7.1 Eye Tracking Challenges -- 7.2 Eye Tracking Visual Analytics Challenges -- References -- Index -- About the Author -- Back Cover Visual analytics Information visualization Erscheint auch als Druck-Ausgabe Burch, Michael Eye Tracking and Visual Analytics Aalborg : River Publishers,c2021 |
spellingShingle | Burch, Michael Eye Tracking and Visual Analytics Front Cover -- Eye Tracking and Visual Analytics -- Contents -- Preface -- List of Figures -- List of Tables -- List of Abbreviations -- 1 Introduction -- 1.1 Tasks, Hypotheses, and Human Observers -- 1.2 Synergy Effects -- 1.3 Dynamic Visual Analytics -- 2 Visualization -- 2.1 Motivating Examples -- 2.2 Historical Background -- 2.2.1 Early Forms of Visualizations -- 2.2.2 The Age of Cartographic Maps -- 2.2.3 Visualization During Industrialization -- 2.2.4 After the Invention of the Computer -- 2.2.5 Visualization Today -- 2.3 Data Types and Visual Encodings -- 2.3.1 Primitive Data -- 2.3.2 Complex Data -- 2.3.3 Mixture of Data -- 2.3.4 Dynamic Data -- 2.3.5 Metadata -- 2.4 Interaction Techniques -- 2.4.1 Interaction Categories -- 2.4.2 Physical Devices -- 2.4.3 Users-in-the-Loop -- 2.5 Design Principles -- 2.5.1 Visual Enhancements and Decorations -- 2.5.2 Visual Structuring and Organization -- 2.5.3 General Design Flaws -- 2.5.4 Gestalt Laws -- 2.5.5 Optical Illusions -- 3 Visual Analytics -- 3.1 Key Concepts -- 3.1.1 Origin and First Stages -- 3.1.2 Data Handling and Management -- 3.1.3 System Ingredients Around the Data -- 3.1.4 Involved Research Fields and Future Perspectives -- 3.2 Visual Analytics Pipeline -- 3.2.1 Data Basis and Runtimes -- 3.2.2 Patterns, Correlations, and Rules -- 3.2.3 Tasks and Hypotheses -- 3.2.4 Refinements and Adaptations -- 3.2.5 Insights and Knowledge -- 3.3 Challenges of Algorithmic Concepts -- 3.3.1 Algorithm Classes -- 3.3.2 Parameter Specifications -- 3.3.3 Algorithmic Runtime Complexities -- 3.3.4 Performance Evaluation -- 3.3.5 Insights into the Running Algorithm -- 3.4 Applications -- 3.4.1 Dynamic Graphs -- 3.4.2 Digital and Computational Pathology -- 3.4.3 Malware Analysis -- 3.4.4 Video Data Analysis -- 3.4.5 Eye Movement Data -- 4 User Evaluation -- 4.1 Study Types -- 4.1.1 Pilot vs. Real Study 4.1.2 Quantitative vs. Qualitative -- 4.1.3 Controlled vs. Uncontrolled -- 4.1.4 Expert vs. Non-Expert -- 4.1.5 Short-term vs. Longitudinal -- 4.1.6 Limited-number Population vs. Crowdsourcing -- 4.1.7 Field vs. Lab -- 4.1.8 With vs. Without Eye Tracking -- 4.2 Human Users -- 4.2.1 Level of Expertise -- 4.2.2 Age Groups -- 4.2.3 Cultural Differences -- 4.2.4 Vision Deficiencies -- 4.2.5 Ethical Guidelines -- 4.3 Study Design and Ingredients -- 4.3.1 Hypotheses and Research Questions -- 4.3.2 Visual Stimuli -- 4.3.3 Tasks -- 4.3.4 Independent and Dependent Variables -- 4.3.5 Experimenter -- 4.4 Statistical Evaluation and Visual Results -- 4.4.1 Data Preparation and Descriptive Statistics -- 4.4.2 Statistical Tests and Inferential Statistics -- 4.4.3 Visual Representation of the Study Results -- 4.5 Example User Studies Without Eye Tracking -- 4.5.1 Hierarchy Visualization Studies -- 4.5.2 Graph Visualization Studies -- 4.5.3 Interaction Technique Studies -- 4.5.4 Visual Analytics Studies -- 5 Eye Tracking -- 5.1 The Eye -- 5.1.1 Eye Anatomy -- 5.1.2 Eye Movement and Smooth Pursuit -- 5.1.3 Disorders and Diseases Influencing Eye Tracking -- 5.1.4 Corrected-to-Normal Vision -- 5.2 Eye Tracking History -- 5.2.1 The Early Days -- 5.2.2 Progress in the Field -- 5.2.3 Eye Tracking Today -- 5.2.4 Companies, Technologies, and Devices -- 5.2.5 Application Fields -- 5.3 Eye Tracking Data Properties -- 5.3.1 Visual Stimuli -- 5.3.2 Gaze Points, Fixations, Saccades, and Scanpaths -- 5.3.3 Areas of Interest (AOIs) and Transitions -- 5.3.4 Physiological and Additional Measures -- 5.3.5 Derived Metrics -- 5.4 Examples of Eye Tracking Studies -- 5.4.1 Eye Tracking for Static Visualizations -- 5.4.2 Eye Tracking for Interaction Techniques -- 5.4.3 Eye Tracking for Text/Label/Code Reading -- 5.4.4 Eye Tracking for User Interfaces 5.4.5 Eye Tracking for Visual Analytics -- 6 Eye Tracking Data Analytics -- 6.1 Data Preparation -- 6.1.1 Data Collection and Acquisition -- 6.1.2 Organization and Relevance -- 6.1.3 Data Annotation and Anonymization -- 6.1.4 Data Interpretation -- 6.1.5 Data Linking -- 6.2 Data Storage, Adaptation, and Transformation -- 6.2.1 Data Storage -- 6.2.2 Validation, Verification, and Cleaning -- 6.2.3 Data Enhancement and Enrichment -- 6.2.4 Data Transformation -- 6.3 Algorithmic Analyses -- 6.3.1 Ordering and Sorting -- 6.3.2 Data Clustering -- 6.3.3 Summarization, Classing, and Classification -- 6.3.4 Normalization and Aggregation -- 6.3.5 Projection and Dimensionality Reduction -- 6.3.6 Correlation and Trend Analysis -- 6.3.7 Pairwise or Multiple Sequence Alignment -- 6.3.8 Artificial Intelligence-Related Approaches -- 6.4 Visualization Techniques and Visual Analytics -- 6.4.1 Statistical Plots -- 6.4.2 Point-based Visualization Techniques -- 6.4.3 AOI-based Visualization Techniques -- 6.4.4 Eye Tracking Visual Analytics -- 7 Open Challenges, Problems, and Difficulties -- 7.1 Eye Tracking Challenges -- 7.2 Eye Tracking Visual Analytics Challenges -- References -- Index -- About the Author -- Back Cover Visual analytics Information visualization |
title | Eye Tracking and Visual Analytics |
title_auth | Eye Tracking and Visual Analytics |
title_exact_search | Eye Tracking and Visual Analytics |
title_exact_search_txtP | Eye Tracking and Visual Analytics |
title_full | Eye Tracking and Visual Analytics |
title_fullStr | Eye Tracking and Visual Analytics |
title_full_unstemmed | Eye Tracking and Visual Analytics |
title_short | Eye Tracking and Visual Analytics |
title_sort | eye tracking and visual analytics |
topic | Visual analytics Information visualization |
topic_facet | Visual analytics Information visualization |
work_keys_str_mv | AT burchmichael eyetrackingandvisualanalytics |