Equivalents of the Riemann Hypothesis, Volume 3, Further steps towards resolving the Riemann Hypothesis:
The Riemann hypothesis (RH) may be the most important outstanding problem in mathematics. This third volume on equivalents to RH comprehensively presents recent results of Nicolas, Rogers-Tao-Dobner, Polymath15, and Matiyasevich. Particularly interesting are derivations which show, assuming all zero...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, England
Cambridge University Press
2023
|
Schriftenreihe: | Encyclopedia of mathematics and its applications
187 |
Schlagworte: | |
Online-Zugang: | DE-12 DE-634 DE-92 DE-91 Volltext |
Zusammenfassung: | The Riemann hypothesis (RH) may be the most important outstanding problem in mathematics. This third volume on equivalents to RH comprehensively presents recent results of Nicolas, Rogers-Tao-Dobner, Polymath15, and Matiyasevich. Particularly interesting are derivations which show, assuming all zeros on the critical line are simple, that RH is decidable. Also included are classical Pólya-Jensen equivalence and related developments of Ono et al. Extensive appendices highlight key background results, most of which are proved. The book is highly accessible, with definitions repeated, proofs split logically, and graphical visuals. It is ideal for mathematicians wishing to update their knowledge, logicians, and graduate students seeking accessible number theory research problems. The three volumes can be read mostly independently. Volume 1 presents classical and modern arithmetic RH equivalents. Volume 2 covers equivalences with a strong analytic orientation. Volume 3 includes further arithmetic and analytic equivalents plus new material on RH decidability. |
Beschreibung: | 1 Online-Ressource (xx, 684 Seiten) |
ISBN: | 9781009384780 |
DOI: | 10.1017/9781009384780 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV049532043 | ||
003 | DE-604 | ||
005 | 20240719 | ||
007 | cr|uuu---uuuuu | ||
008 | 240205s2023 |||| o||u| ||||||eng d | ||
020 | |a 9781009384780 |c Online |9 978-1-009-38478-0 | ||
024 | 7 | |a 10.1017/9781009384780 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781009384780 | ||
035 | |a (OCoLC)1422415222 | ||
035 | |a (DE-599)BVBBV049532043 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-634 |a DE-91 | ||
082 | 0 | |a 512.7/3 | |
084 | |a MAT 107 |2 stub | ||
100 | 1 | |a Broughan, Kevin A. |d 1943- |0 (DE-588)1137861630 |4 aut | |
245 | 1 | 0 | |a Equivalents of the Riemann Hypothesis, Volume 3, Further steps towards resolving the Riemann Hypothesis |c Kevin Broughan |
264 | 1 | |a Cambridge, England |b Cambridge University Press |c 2023 | |
300 | |a 1 Online-Ressource (xx, 684 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Encyclopedia of mathematics and its applications |v 187 | |
520 | |a The Riemann hypothesis (RH) may be the most important outstanding problem in mathematics. This third volume on equivalents to RH comprehensively presents recent results of Nicolas, Rogers-Tao-Dobner, Polymath15, and Matiyasevich. Particularly interesting are derivations which show, assuming all zeros on the critical line are simple, that RH is decidable. Also included are classical Pólya-Jensen equivalence and related developments of Ono et al. Extensive appendices highlight key background results, most of which are proved. The book is highly accessible, with definitions repeated, proofs split logically, and graphical visuals. It is ideal for mathematicians wishing to update their knowledge, logicians, and graduate students seeking accessible number theory research problems. The three volumes can be read mostly independently. Volume 1 presents classical and modern arithmetic RH equivalents. Volume 2 covers equivalences with a strong analytic orientation. Volume 3 includes further arithmetic and analytic equivalents plus new material on RH decidability. | ||
650 | 4 | |a Riemann hypothesis | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-009-38480-3 |
830 | 0 | |a Encyclopedia of mathematics and its applications |v 187 |w (DE-604)BV044777929 |9 187 | |
856 | 4 | 0 | |u https://doi.org/10.1017/9781009384780 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034877663 | |
966 | e | |u https://doi.org/10.1017/9781009384780 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009384780 |l DE-634 |p ZDB-20-CBO |q BTU_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009384780 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009384780 |l DE-91 |p ZDB-20-CBO |q TUM_Einzelkauf_2024 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1805088119009050624 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Broughan, Kevin A. 1943- |
author_GND | (DE-588)1137861630 |
author_facet | Broughan, Kevin A. 1943- |
author_role | aut |
author_sort | Broughan, Kevin A. 1943- |
author_variant | k a b ka kab |
building | Verbundindex |
bvnumber | BV049532043 |
classification_tum | MAT 107 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781009384780 (OCoLC)1422415222 (DE-599)BVBBV049532043 |
dewey-full | 512.7/3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7/3 |
dewey-search | 512.7/3 |
dewey-sort | 3512.7 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1017/9781009384780 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zcb4500</leader><controlfield tag="001">BV049532043</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240719</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240205s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009384780</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-009-38478-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781009384780</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781009384780</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1422415222</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049532043</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7/3</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 107</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Broughan, Kevin A.</subfield><subfield code="d">1943-</subfield><subfield code="0">(DE-588)1137861630</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Equivalents of the Riemann Hypothesis, Volume 3, Further steps towards resolving the Riemann Hypothesis</subfield><subfield code="c">Kevin Broughan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, England</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xx, 684 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">187</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The Riemann hypothesis (RH) may be the most important outstanding problem in mathematics. This third volume on equivalents to RH comprehensively presents recent results of Nicolas, Rogers-Tao-Dobner, Polymath15, and Matiyasevich. Particularly interesting are derivations which show, assuming all zeros on the critical line are simple, that RH is decidable. Also included are classical Pólya-Jensen equivalence and related developments of Ono et al. Extensive appendices highlight key background results, most of which are proved. The book is highly accessible, with definitions repeated, proofs split logically, and graphical visuals. It is ideal for mathematicians wishing to update their knowledge, logicians, and graduate students seeking accessible number theory research problems. The three volumes can be read mostly independently. Volume 1 presents classical and modern arithmetic RH equivalents. Volume 2 covers equivalences with a strong analytic orientation. Volume 3 includes further arithmetic and analytic equivalents plus new material on RH decidability.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Riemann hypothesis</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-009-38480-3</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopedia of mathematics and its applications</subfield><subfield code="v">187</subfield><subfield code="w">(DE-604)BV044777929</subfield><subfield code="9">187</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781009384780</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034877663</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009384780</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009384780</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BTU_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009384780</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009384780</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">TUM_Einzelkauf_2024</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049532043 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:27:07Z |
indexdate | 2024-07-20T09:02:57Z |
institution | BVB |
isbn | 9781009384780 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034877663 |
oclc_num | 1422415222 |
open_access_boolean | |
owner | DE-12 DE-92 DE-634 DE-91 DE-BY-TUM |
owner_facet | DE-12 DE-92 DE-634 DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xx, 684 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO BTU_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO TUM_Einzelkauf_2024 |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Cambridge University Press |
record_format | marc |
series | Encyclopedia of mathematics and its applications |
series2 | Encyclopedia of mathematics and its applications |
spelling | Broughan, Kevin A. 1943- (DE-588)1137861630 aut Equivalents of the Riemann Hypothesis, Volume 3, Further steps towards resolving the Riemann Hypothesis Kevin Broughan Cambridge, England Cambridge University Press 2023 1 Online-Ressource (xx, 684 Seiten) txt rdacontent c rdamedia cr rdacarrier Encyclopedia of mathematics and its applications 187 The Riemann hypothesis (RH) may be the most important outstanding problem in mathematics. This third volume on equivalents to RH comprehensively presents recent results of Nicolas, Rogers-Tao-Dobner, Polymath15, and Matiyasevich. Particularly interesting are derivations which show, assuming all zeros on the critical line are simple, that RH is decidable. Also included are classical Pólya-Jensen equivalence and related developments of Ono et al. Extensive appendices highlight key background results, most of which are proved. The book is highly accessible, with definitions repeated, proofs split logically, and graphical visuals. It is ideal for mathematicians wishing to update their knowledge, logicians, and graduate students seeking accessible number theory research problems. The three volumes can be read mostly independently. Volume 1 presents classical and modern arithmetic RH equivalents. Volume 2 covers equivalences with a strong analytic orientation. Volume 3 includes further arithmetic and analytic equivalents plus new material on RH decidability. Riemann hypothesis Erscheint auch als Druck-Ausgabe 978-1-009-38480-3 Encyclopedia of mathematics and its applications 187 (DE-604)BV044777929 187 https://doi.org/10.1017/9781009384780 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Broughan, Kevin A. 1943- Equivalents of the Riemann Hypothesis, Volume 3, Further steps towards resolving the Riemann Hypothesis Riemann hypothesis Encyclopedia of mathematics and its applications |
title | Equivalents of the Riemann Hypothesis, Volume 3, Further steps towards resolving the Riemann Hypothesis |
title_auth | Equivalents of the Riemann Hypothesis, Volume 3, Further steps towards resolving the Riemann Hypothesis |
title_exact_search | Equivalents of the Riemann Hypothesis, Volume 3, Further steps towards resolving the Riemann Hypothesis |
title_exact_search_txtP | Equivalents of the Riemann Hypothesis, Volume 3, Further steps towards resolving the Riemann Hypothesis |
title_full | Equivalents of the Riemann Hypothesis, Volume 3, Further steps towards resolving the Riemann Hypothesis Kevin Broughan |
title_fullStr | Equivalents of the Riemann Hypothesis, Volume 3, Further steps towards resolving the Riemann Hypothesis Kevin Broughan |
title_full_unstemmed | Equivalents of the Riemann Hypothesis, Volume 3, Further steps towards resolving the Riemann Hypothesis Kevin Broughan |
title_short | Equivalents of the Riemann Hypothesis, Volume 3, Further steps towards resolving the Riemann Hypothesis |
title_sort | equivalents of the riemann hypothesis volume 3 further steps towards resolving the riemann hypothesis |
topic | Riemann hypothesis |
topic_facet | Riemann hypothesis |
url | https://doi.org/10.1017/9781009384780 |
volume_link | (DE-604)BV044777929 |
work_keys_str_mv | AT broughankevina equivalentsoftheriemannhypothesisvolume3furtherstepstowardsresolvingtheriemannhypothesis |