Equivalents of the Riemann Hypothesis, Volume 3, Further steps towards resolving the Riemann Hypothesis:

The Riemann hypothesis (RH) may be the most important outstanding problem in mathematics. This third volume on equivalents to RH comprehensively presents recent results of Nicolas, Rogers-Tao-Dobner, Polymath15, and Matiyasevich. Particularly interesting are derivations which show, assuming all zero...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Broughan, Kevin A. 1943- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge, England Cambridge University Press 2023
Schriftenreihe:Encyclopedia of mathematics and its applications 187
Schlagworte:
Online-Zugang:DE-12
DE-634
DE-92
DE-91
Volltext
Zusammenfassung:The Riemann hypothesis (RH) may be the most important outstanding problem in mathematics. This third volume on equivalents to RH comprehensively presents recent results of Nicolas, Rogers-Tao-Dobner, Polymath15, and Matiyasevich. Particularly interesting are derivations which show, assuming all zeros on the critical line are simple, that RH is decidable. Also included are classical Pólya-Jensen equivalence and related developments of Ono et al. Extensive appendices highlight key background results, most of which are proved. The book is highly accessible, with definitions repeated, proofs split logically, and graphical visuals. It is ideal for mathematicians wishing to update their knowledge, logicians, and graduate students seeking accessible number theory research problems. The three volumes can be read mostly independently. Volume 1 presents classical and modern arithmetic RH equivalents. Volume 2 covers equivalences with a strong analytic orientation. Volume 3 includes further arithmetic and analytic equivalents plus new material on RH decidability.
Beschreibung:1 Online-Ressource (xx, 684 Seiten)
ISBN:9781009384780
DOI:10.1017/9781009384780

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen