Equivariant cohomology in algebraic geometry:
Equivariant cohomology has become an indispensable tool in algebraic geometry and in related areas including representation theory, combinatorial and enumerative geometry, and algebraic combinatorics. This text introduces the main ideas of the subject for first- or second-year graduate students in m...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2024
|
Schriftenreihe: | Cambridge studies in advanced mathematics
210 |
Schlagworte: | |
Online-Zugang: | DE-12 DE-634 DE-92 DE-91 Volltext |
Zusammenfassung: | Equivariant cohomology has become an indispensable tool in algebraic geometry and in related areas including representation theory, combinatorial and enumerative geometry, and algebraic combinatorics. This text introduces the main ideas of the subject for first- or second-year graduate students in mathematics, as well as researchers working in algebraic geometry or combinatorics. The first six chapters cover the basics: definitions via finite-dimensional approximation spaces, computations in projective space, and the localization theorem. The rest of the text focuses on examples - toric varieties, Grassmannians, and homogeneous spaces - along with applications to Schubert calculus and degeneracy loci. Prerequisites are kept to a minimum, so that one-semester graduate-level courses in algebraic geometry and topology should be sufficient preparation. Featuring numerous exercises, examples, and material that has not previously appeared in textbook form, this book will be a must-have reference and resource for both students and researchers for years to come |
Beschreibung: | 1 Online-Ressource (xv, 446 Seiten) |
ISBN: | 9781009349994 |
DOI: | 10.1017/9781009349994 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV049531862 | ||
003 | DE-604 | ||
005 | 20240719 | ||
007 | cr|uuu---uuuuu | ||
008 | 240205s2024 xx o|||| 00||| eng d | ||
020 | |a 9781009349994 |c Online |9 978-1-009-34999-4 | ||
024 | 7 | |a 10.1017/9781009349994 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781009349994 | ||
035 | |a (OCoLC)1422423363 | ||
035 | |a (DE-599)BVBBV049531862 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-634 |a DE-91 | ||
082 | 0 | |a 516.35 | |
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a 20G05 |2 msc/2020 | ||
084 | |a 14Mxx |2 msc/2020 | ||
084 | |a 55N91 |2 msc/2020 | ||
084 | |a 05E14 |2 msc/2020 | ||
084 | |a 14L30 |2 msc/2020 | ||
084 | |a MAT 143 |2 stub | ||
100 | 1 | |a Anderson, David L. |d 1953- |0 (DE-588)173483224 |4 aut | |
245 | 1 | 0 | |a Equivariant cohomology in algebraic geometry |c David Anderson, William Fulton |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2024 | |
300 | |a 1 Online-Ressource (xv, 446 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge studies in advanced mathematics |v 210 | |
520 | |a Equivariant cohomology has become an indispensable tool in algebraic geometry and in related areas including representation theory, combinatorial and enumerative geometry, and algebraic combinatorics. This text introduces the main ideas of the subject for first- or second-year graduate students in mathematics, as well as researchers working in algebraic geometry or combinatorics. The first six chapters cover the basics: definitions via finite-dimensional approximation spaces, computations in projective space, and the localization theorem. The rest of the text focuses on examples - toric varieties, Grassmannians, and homogeneous spaces - along with applications to Schubert calculus and degeneracy loci. Prerequisites are kept to a minimum, so that one-semester graduate-level courses in algebraic geometry and topology should be sufficient preparation. Featuring numerous exercises, examples, and material that has not previously appeared in textbook form, this book will be a must-have reference and resource for both students and researchers for years to come | ||
650 | 4 | |a Geometry, Algebraic | |
650 | 4 | |a Homology theory | |
700 | 1 | |a Fulton, William |d 1939- |0 (DE-588)136272541 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781009349987 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781009349970 |
830 | 0 | |a Cambridge studies in advanced mathematics |v 210 |w (DE-604)BV044781283 |9 210 | |
856 | 4 | 0 | |u https://doi.org/10.1017/9781009349994 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034877488 | |
966 | e | |u https://doi.org/10.1017/9781009349994 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009349994 |l DE-634 |p ZDB-20-CBO |q BTU_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009349994 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009349994 |l DE-91 |p ZDB-20-CBO |q TUM_Einzelkauf_2024 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1820882884496457728 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Anderson, David L. 1953- Fulton, William 1939- |
author_GND | (DE-588)173483224 (DE-588)136272541 |
author_facet | Anderson, David L. 1953- Fulton, William 1939- |
author_role | aut aut |
author_sort | Anderson, David L. 1953- |
author_variant | d l a dl dla w f wf |
building | Verbundindex |
bvnumber | BV049531862 |
classification_rvk | SK 240 |
classification_tum | MAT 143 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781009349994 (OCoLC)1422423363 (DE-599)BVBBV049531862 |
dewey-full | 516.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.35 |
dewey-search | 516.35 |
dewey-sort | 3516.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1017/9781009349994 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zcb4500</leader><controlfield tag="001">BV049531862</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240719</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240205s2024 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009349994</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-009-34999-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781009349994</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781009349994</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1422423363</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049531862</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">20G05</subfield><subfield code="2">msc/2020</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14Mxx</subfield><subfield code="2">msc/2020</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55N91</subfield><subfield code="2">msc/2020</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">05E14</subfield><subfield code="2">msc/2020</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14L30</subfield><subfield code="2">msc/2020</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 143</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Anderson, David L.</subfield><subfield code="d">1953-</subfield><subfield code="0">(DE-588)173483224</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Equivariant cohomology in algebraic geometry</subfield><subfield code="c">David Anderson, William Fulton</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xv, 446 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">210</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Equivariant cohomology has become an indispensable tool in algebraic geometry and in related areas including representation theory, combinatorial and enumerative geometry, and algebraic combinatorics. This text introduces the main ideas of the subject for first- or second-year graduate students in mathematics, as well as researchers working in algebraic geometry or combinatorics. The first six chapters cover the basics: definitions via finite-dimensional approximation spaces, computations in projective space, and the localization theorem. The rest of the text focuses on examples - toric varieties, Grassmannians, and homogeneous spaces - along with applications to Schubert calculus and degeneracy loci. Prerequisites are kept to a minimum, so that one-semester graduate-level courses in algebraic geometry and topology should be sufficient preparation. Featuring numerous exercises, examples, and material that has not previously appeared in textbook form, this book will be a must-have reference and resource for both students and researchers for years to come</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homology theory</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fulton, William</subfield><subfield code="d">1939-</subfield><subfield code="0">(DE-588)136272541</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781009349987</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781009349970</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">210</subfield><subfield code="w">(DE-604)BV044781283</subfield><subfield code="9">210</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781009349994</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034877488</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009349994</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009349994</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BTU_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009349994</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009349994</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">TUM_Einzelkauf_2024</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049531862 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:27:06Z |
indexdate | 2025-01-10T17:14:00Z |
institution | BVB |
isbn | 9781009349994 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034877488 |
oclc_num | 1422423363 |
open_access_boolean | |
owner | DE-12 DE-92 DE-634 DE-91 DE-BY-TUM |
owner_facet | DE-12 DE-92 DE-634 DE-91 DE-BY-TUM |
physical | 1 Online-Ressource (xv, 446 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO BTU_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO TUM_Einzelkauf_2024 |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Cambridge University Press |
record_format | marc |
series | Cambridge studies in advanced mathematics |
series2 | Cambridge studies in advanced mathematics |
spelling | Anderson, David L. 1953- (DE-588)173483224 aut Equivariant cohomology in algebraic geometry David Anderson, William Fulton Cambridge Cambridge University Press 2024 1 Online-Ressource (xv, 446 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge studies in advanced mathematics 210 Equivariant cohomology has become an indispensable tool in algebraic geometry and in related areas including representation theory, combinatorial and enumerative geometry, and algebraic combinatorics. This text introduces the main ideas of the subject for first- or second-year graduate students in mathematics, as well as researchers working in algebraic geometry or combinatorics. The first six chapters cover the basics: definitions via finite-dimensional approximation spaces, computations in projective space, and the localization theorem. The rest of the text focuses on examples - toric varieties, Grassmannians, and homogeneous spaces - along with applications to Schubert calculus and degeneracy loci. Prerequisites are kept to a minimum, so that one-semester graduate-level courses in algebraic geometry and topology should be sufficient preparation. Featuring numerous exercises, examples, and material that has not previously appeared in textbook form, this book will be a must-have reference and resource for both students and researchers for years to come Geometry, Algebraic Homology theory Fulton, William 1939- (DE-588)136272541 aut Erscheint auch als Druck-Ausgabe 9781009349987 Erscheint auch als Druck-Ausgabe 9781009349970 Cambridge studies in advanced mathematics 210 (DE-604)BV044781283 210 https://doi.org/10.1017/9781009349994 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Anderson, David L. 1953- Fulton, William 1939- Equivariant cohomology in algebraic geometry Geometry, Algebraic Homology theory Cambridge studies in advanced mathematics |
title | Equivariant cohomology in algebraic geometry |
title_auth | Equivariant cohomology in algebraic geometry |
title_exact_search | Equivariant cohomology in algebraic geometry |
title_exact_search_txtP | Equivariant cohomology in algebraic geometry |
title_full | Equivariant cohomology in algebraic geometry David Anderson, William Fulton |
title_fullStr | Equivariant cohomology in algebraic geometry David Anderson, William Fulton |
title_full_unstemmed | Equivariant cohomology in algebraic geometry David Anderson, William Fulton |
title_short | Equivariant cohomology in algebraic geometry |
title_sort | equivariant cohomology in algebraic geometry |
topic | Geometry, Algebraic Homology theory |
topic_facet | Geometry, Algebraic Homology theory |
url | https://doi.org/10.1017/9781009349994 |
volume_link | (DE-604)BV044781283 |
work_keys_str_mv | AT andersondavidl equivariantcohomologyinalgebraicgeometry AT fultonwilliam equivariantcohomologyinalgebraicgeometry |