Mapping texts: computational text analysis for the social sciences
Mapping Texts is the first introduction to computational text analysis that simultaneously blends conceptual treatments with practical, hands-on examples that walk the reader through how to conduct text analysis projects with real data. The book shows how to conduct text analysis in the R statistica...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford
Oxford University Press
2024
|
Schriftenreihe: | Computational social science series
|
Online-Zugang: | FWS01 FWS02 URL des Erstveröffentlichers |
Zusammenfassung: | Mapping Texts is the first introduction to computational text analysis that simultaneously blends conceptual treatments with practical, hands-on examples that walk the reader through how to conduct text analysis projects with real data. The book shows how to conduct text analysis in the R statistical computing environment--a popular programming language in data science. Cover -- Advance Praise for Mapping Texts -- Mapping Texts: Computational Text Analysis for the Social Sciences -- Copyright -- Dediaction -- Contents -- Preface -- What You Will Learn -- What We Left Out -- Acknowledgments -- Part I: Bounding Texts -- 1: Text in Context -- What Is Language? -- What Is Text? -- 2: Corpus Building -- Texts Are Not People -- Balance, Range, and Representativeness -- Text Metadata -- Authors and Audiences -- Time and Location -- Domains and Media -- Text Data -- Languages and Dialects -- Genres and Topics -- Registers and Styles -- Redrawing Boundaries -- Part II: Prerequisites -- 3: Computing Basics -- Brass Tacks -- Coding Environments -- Data Objects, Types, and Structures -- Dialects of R -- Control Processes: Functions, Loops, and Apply -- Installing and Loading Packages -- Using Python in R -- Data Visualization -- Where to from Here -- 4: Math Basics -- The Fundamentals -- Comparing Vectors -- Dot Product -- Euclidean Distance and Cosine Similarity -- Correlation -- Regression -- Comparing Distributions -- Central Tendency -- Dispersion -- Types of Distributions -- Our Dear Friend, the Matrix -- Matrix Projection -- Vector Spaces and Singular Value Decomposition -- Graphs and Matrix Projection -- A Little Math Goes a Long Way -- Part III: Foundations -- 5: Acquiring Text -- Public Text Datasets -- Optical Character Recognition -- Automated Audio Transcription -- Application Programming Interfaces (APIs) -- Automated Web Scraping -- Legal and Ethical Side of Scraping -- Terms of Service -- Intellectual Property -- Individual and Organizational Privacy -- 6: From Text to Numbers -- Units of Analysis -- Tokenizing -- Chunking -- Document Features -- Sparsity -- Dedicated DTM Functions -- Token Distributions -- Zipf's Law and Herdan-heaps' Law -- Weighting and Norming -- Relative Term Frequency. |
Beschreibung: | Informationen teilweise von Landing Page übernommen oder ermittelt, da Titelseite fehlt |
Beschreibung: | 1 Online-Ressource (326 Seiten) |
ISBN: | 9780197756911 |
DOI: | 10.1093/oso/9780197756874.001.0001 |
Internformat
MARC
LEADER | 00000nmm a22000001c 4500 | ||
---|---|---|---|
001 | BV049516689 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 240125s2024 |||| o||u| ||||||eng d | ||
020 | |a 9780197756911 |c Online, ebook |9 978-0-19-775691-1 | ||
035 | |a (OCoLC)1422473410 | ||
035 | |a (DE-599)BVBBV049516689 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-863 |a DE-862 | ||
100 | 1 | |a Stoltz, Dustin S. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mapping texts |b computational text analysis for the social sciences |
264 | 1 | |a Oxford |b Oxford University Press |c 2024 | |
300 | |a 1 Online-Ressource (326 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Computational social science series | |
500 | |a Informationen teilweise von Landing Page übernommen oder ermittelt, da Titelseite fehlt | ||
520 | 3 | |a Mapping Texts is the first introduction to computational text analysis that simultaneously blends conceptual treatments with practical, hands-on examples that walk the reader through how to conduct text analysis projects with real data. The book shows how to conduct text analysis in the R statistical computing environment--a popular programming language in data science. | |
520 | 3 | |a Cover -- Advance Praise for Mapping Texts -- Mapping Texts: Computational Text Analysis for the Social Sciences -- Copyright -- Dediaction -- Contents -- Preface -- What You Will Learn -- What We Left Out -- Acknowledgments -- Part I: Bounding Texts -- 1: Text in Context -- What Is Language? -- What Is Text? -- 2: Corpus Building -- Texts Are Not People -- Balance, Range, and Representativeness -- Text Metadata -- Authors and Audiences -- Time and Location -- Domains and Media -- Text Data -- Languages and Dialects -- Genres and Topics -- Registers and Styles -- Redrawing Boundaries -- Part II: Prerequisites -- 3: Computing Basics -- Brass Tacks -- Coding Environments -- Data Objects, Types, and Structures -- Dialects of R -- Control Processes: Functions, Loops, and Apply -- Installing and Loading Packages -- Using Python in R -- Data Visualization -- Where to from Here -- 4: Math Basics -- The Fundamentals -- Comparing Vectors -- Dot Product -- Euclidean Distance and Cosine Similarity -- Correlation -- Regression -- Comparing Distributions -- Central Tendency -- Dispersion -- Types of Distributions -- Our Dear Friend, the Matrix -- Matrix Projection -- Vector Spaces and Singular Value Decomposition -- Graphs and Matrix Projection -- A Little Math Goes a Long Way -- Part III: Foundations -- 5: Acquiring Text -- Public Text Datasets -- Optical Character Recognition -- Automated Audio Transcription -- Application Programming Interfaces (APIs) -- Automated Web Scraping -- Legal and Ethical Side of Scraping -- Terms of Service -- Intellectual Property -- Individual and Organizational Privacy -- 6: From Text to Numbers -- Units of Analysis -- Tokenizing -- Chunking -- Document Features -- Sparsity -- Dedicated DTM Functions -- Token Distributions -- Zipf's Law and Herdan-heaps' Law -- Weighting and Norming -- Relative Term Frequency. | |
700 | 1 | |a Taylor, Marshall A. |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-0-19-775687-4 |
856 | 4 | 0 | |u https://doi.org/10.1093/oso/9780197756874.001.0001 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-28-OSS | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034862621 | ||
966 | e | |u https://doi.org/10.1093/oso/9780197756874.001.0001 |l FWS01 |p ZDB-28-OSS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1093/oso/9780197756874.001.0001 |l FWS02 |p ZDB-28-OSS |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 1064000 |
---|---|
_version_ | 1806175576308842496 |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Stoltz, Dustin S. Taylor, Marshall A. |
author_facet | Stoltz, Dustin S. Taylor, Marshall A. |
author_role | aut aut |
author_sort | Stoltz, Dustin S. |
author_variant | d s s ds dss m a t ma mat |
building | Verbundindex |
bvnumber | BV049516689 |
collection | ZDB-28-OSS |
ctrlnum | (OCoLC)1422473410 (DE-599)BVBBV049516689 |
doi_str_mv | 10.1093/oso/9780197756874.001.0001 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03673nmm a22003731c 4500</leader><controlfield tag="001">BV049516689</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240125s2024 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780197756911</subfield><subfield code="c">Online, ebook</subfield><subfield code="9">978-0-19-775691-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1422473410</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049516689</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stoltz, Dustin S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mapping texts</subfield><subfield code="b">computational text analysis for the social sciences</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford</subfield><subfield code="b">Oxford University Press</subfield><subfield code="c">2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (326 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Computational social science series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Informationen teilweise von Landing Page übernommen oder ermittelt, da Titelseite fehlt</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Mapping Texts is the first introduction to computational text analysis that simultaneously blends conceptual treatments with practical, hands-on examples that walk the reader through how to conduct text analysis projects with real data. The book shows how to conduct text analysis in the R statistical computing environment--a popular programming language in data science.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Cover -- Advance Praise for Mapping Texts -- Mapping Texts: Computational Text Analysis for the Social Sciences -- Copyright -- Dediaction -- Contents -- Preface -- What You Will Learn -- What We Left Out -- Acknowledgments -- Part I: Bounding Texts -- 1: Text in Context -- What Is Language? -- What Is Text? -- 2: Corpus Building -- Texts Are Not People -- Balance, Range, and Representativeness -- Text Metadata -- Authors and Audiences -- Time and Location -- Domains and Media -- Text Data -- Languages and Dialects -- Genres and Topics -- Registers and Styles -- Redrawing Boundaries -- Part II: Prerequisites -- 3: Computing Basics -- Brass Tacks -- Coding Environments -- Data Objects, Types, and Structures -- Dialects of R -- Control Processes: Functions, Loops, and Apply -- Installing and Loading Packages -- Using Python in R -- Data Visualization -- Where to from Here -- 4: Math Basics -- The Fundamentals -- Comparing Vectors -- Dot Product -- Euclidean Distance and Cosine Similarity -- Correlation -- Regression -- Comparing Distributions -- Central Tendency -- Dispersion -- Types of Distributions -- Our Dear Friend, the Matrix -- Matrix Projection -- Vector Spaces and Singular Value Decomposition -- Graphs and Matrix Projection -- A Little Math Goes a Long Way -- Part III: Foundations -- 5: Acquiring Text -- Public Text Datasets -- Optical Character Recognition -- Automated Audio Transcription -- Application Programming Interfaces (APIs) -- Automated Web Scraping -- Legal and Ethical Side of Scraping -- Terms of Service -- Intellectual Property -- Individual and Organizational Privacy -- 6: From Text to Numbers -- Units of Analysis -- Tokenizing -- Chunking -- Document Features -- Sparsity -- Dedicated DTM Functions -- Token Distributions -- Zipf's Law and Herdan-heaps' Law -- Weighting and Norming -- Relative Term Frequency.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Taylor, Marshall A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-19-775687-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1093/oso/9780197756874.001.0001</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-28-OSS</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034862621</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1093/oso/9780197756874.001.0001</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-28-OSS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1093/oso/9780197756874.001.0001</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-28-OSS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049516689 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:24:07Z |
indexdate | 2024-08-01T11:07:37Z |
institution | BVB |
isbn | 9780197756911 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034862621 |
oclc_num | 1422473410 |
open_access_boolean | |
owner | DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (326 Seiten) |
psigel | ZDB-28-OSS |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Oxford University Press |
record_format | marc |
series2 | Computational social science series |
spellingShingle | Stoltz, Dustin S. Taylor, Marshall A. Mapping texts computational text analysis for the social sciences |
title | Mapping texts computational text analysis for the social sciences |
title_auth | Mapping texts computational text analysis for the social sciences |
title_exact_search | Mapping texts computational text analysis for the social sciences |
title_exact_search_txtP | Mapping texts computational text analysis for the social sciences |
title_full | Mapping texts computational text analysis for the social sciences |
title_fullStr | Mapping texts computational text analysis for the social sciences |
title_full_unstemmed | Mapping texts computational text analysis for the social sciences |
title_short | Mapping texts |
title_sort | mapping texts computational text analysis for the social sciences |
title_sub | computational text analysis for the social sciences |
url | https://doi.org/10.1093/oso/9780197756874.001.0001 |
work_keys_str_mv | AT stoltzdustins mappingtextscomputationaltextanalysisforthesocialsciences AT taylormarshalla mappingtextscomputationaltextanalysisforthesocialsciences |