Complex algebraic threefolds:
The first book on the explicit birational geometry of complex algebraic threefolds arising from the minimal model program, this text is sure to become an essential reference in the field of birational geometry. Threefolds remain the interface between low and high-dimensional settings and a good unde...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York, NY
Cambridge University Press
2023
|
Schriftenreihe: | Cambridge studies in advanced mathematics
209 |
Schlagworte: | |
Online-Zugang: | BSB01 BTU01 FHN01 Volltext |
Zusammenfassung: | The first book on the explicit birational geometry of complex algebraic threefolds arising from the minimal model program, this text is sure to become an essential reference in the field of birational geometry. Threefolds remain the interface between low and high-dimensional settings and a good understanding of them is necessary in this actively evolving area. Intended for advanced graduate students as well as researchers working in birational geometry, the book is as self-contained as possible. Detailed proofs are given throughout and more than 100 examples help to deepen understanding of birational geometry. The first part of the book deals with threefold singularities, divisorial contractions and flips. After a thorough explanation of the Sarkisov program, the second part is devoted to the analysis of outputs, specifically minimal models and Mori fibre spaces. The latter are divided into conical fibrations, del Pezzo fibrations and Fano threefolds according to the relative dimension |
Beschreibung: | Title from publisher's bibliographic system (viewed on 29 Sep 2023) The minimal model program -- Singularities -- Divisorial contractions to points -- Divisorial contractions to curves -- Flips -- The Sarkisov category -- Conical fibrations -- Del Pezzo fibrations -- Fano threefolds -- Minimal models |
Beschreibung: | 1 Online-Ressource (xii, 490 Seiten) |
ISBN: | 9781108933988 |
DOI: | 10.1017/9781108933988 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV049508933 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 240119s2023 |||| o||u| ||||||eng d | ||
020 | |a 9781108933988 |c Online |9 978-1-108-93398-8 | ||
024 | 7 | |a 10.1017/9781108933988 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108933988 | ||
035 | |a (OCoLC)1418704965 | ||
035 | |a (DE-599)BVBBV049508933 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-634 | ||
082 | 0 | |a 516.35 | |
100 | 1 | |a Kawakita, Masayuki |d 1976- |0 (DE-588)1309174423 |4 aut | |
245 | 1 | 0 | |a Complex algebraic threefolds |c Masayuki Kawakita |
264 | 1 | |a Cambridge ; New York, NY |b Cambridge University Press |c 2023 | |
300 | |a 1 Online-Ressource (xii, 490 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge studies in advanced mathematics |v 209 | |
500 | |a Title from publisher's bibliographic system (viewed on 29 Sep 2023) | ||
500 | |a The minimal model program -- Singularities -- Divisorial contractions to points -- Divisorial contractions to curves -- Flips -- The Sarkisov category -- Conical fibrations -- Del Pezzo fibrations -- Fano threefolds -- Minimal models | ||
520 | |a The first book on the explicit birational geometry of complex algebraic threefolds arising from the minimal model program, this text is sure to become an essential reference in the field of birational geometry. Threefolds remain the interface between low and high-dimensional settings and a good understanding of them is necessary in this actively evolving area. Intended for advanced graduate students as well as researchers working in birational geometry, the book is as self-contained as possible. Detailed proofs are given throughout and more than 100 examples help to deepen understanding of birational geometry. The first part of the book deals with threefold singularities, divisorial contractions and flips. After a thorough explanation of the Sarkisov program, the second part is devoted to the analysis of outputs, specifically minimal models and Mori fibre spaces. The latter are divided into conical fibrations, del Pezzo fibrations and Fano threefolds according to the relative dimension | ||
650 | 4 | |a Threefolds (Algebraic geometry) | |
650 | 4 | |a Abelian varieties | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-108-84423-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108933988 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034855028 | ||
966 | e | |u https://doi.org/10.1017/9781108933988 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108933988 |l BTU01 |p ZDB-20-CBO |q BTU_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108933988 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804186322011684864 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Kawakita, Masayuki 1976- |
author_GND | (DE-588)1309174423 |
author_facet | Kawakita, Masayuki 1976- |
author_role | aut |
author_sort | Kawakita, Masayuki 1976- |
author_variant | m k mk |
building | Verbundindex |
bvnumber | BV049508933 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108933988 (OCoLC)1418704965 (DE-599)BVBBV049508933 |
dewey-full | 516.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.35 |
dewey-search | 516.35 |
dewey-sort | 3516.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1017/9781108933988 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02918nmm a2200433zcb4500</leader><controlfield tag="001">BV049508933</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240119s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108933988</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-93398-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108933988</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108933988</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1418704965</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049508933</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kawakita, Masayuki</subfield><subfield code="d">1976-</subfield><subfield code="0">(DE-588)1309174423</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex algebraic threefolds</subfield><subfield code="c">Masayuki Kawakita</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge ; New York, NY</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xii, 490 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge studies in advanced mathematics</subfield><subfield code="v">209</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 29 Sep 2023)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The minimal model program -- Singularities -- Divisorial contractions to points -- Divisorial contractions to curves -- Flips -- The Sarkisov category -- Conical fibrations -- Del Pezzo fibrations -- Fano threefolds -- Minimal models</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The first book on the explicit birational geometry of complex algebraic threefolds arising from the minimal model program, this text is sure to become an essential reference in the field of birational geometry. Threefolds remain the interface between low and high-dimensional settings and a good understanding of them is necessary in this actively evolving area. Intended for advanced graduate students as well as researchers working in birational geometry, the book is as self-contained as possible. Detailed proofs are given throughout and more than 100 examples help to deepen understanding of birational geometry. The first part of the book deals with threefold singularities, divisorial contractions and flips. After a thorough explanation of the Sarkisov program, the second part is devoted to the analysis of outputs, specifically minimal models and Mori fibre spaces. The latter are divided into conical fibrations, del Pezzo fibrations and Fano threefolds according to the relative dimension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Threefolds (Algebraic geometry)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Abelian varieties</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-108-84423-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108933988</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034855028</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108933988</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108933988</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BTU_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108933988</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049508933 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:22:49Z |
indexdate | 2024-07-10T10:09:17Z |
institution | BVB |
isbn | 9781108933988 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034855028 |
oclc_num | 1418704965 |
open_access_boolean | |
owner | DE-12 DE-92 DE-634 |
owner_facet | DE-12 DE-92 DE-634 |
physical | 1 Online-Ressource (xii, 490 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO BTU_PDA_CBO ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge studies in advanced mathematics |
spelling | Kawakita, Masayuki 1976- (DE-588)1309174423 aut Complex algebraic threefolds Masayuki Kawakita Cambridge ; New York, NY Cambridge University Press 2023 1 Online-Ressource (xii, 490 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge studies in advanced mathematics 209 Title from publisher's bibliographic system (viewed on 29 Sep 2023) The minimal model program -- Singularities -- Divisorial contractions to points -- Divisorial contractions to curves -- Flips -- The Sarkisov category -- Conical fibrations -- Del Pezzo fibrations -- Fano threefolds -- Minimal models The first book on the explicit birational geometry of complex algebraic threefolds arising from the minimal model program, this text is sure to become an essential reference in the field of birational geometry. Threefolds remain the interface between low and high-dimensional settings and a good understanding of them is necessary in this actively evolving area. Intended for advanced graduate students as well as researchers working in birational geometry, the book is as self-contained as possible. Detailed proofs are given throughout and more than 100 examples help to deepen understanding of birational geometry. The first part of the book deals with threefold singularities, divisorial contractions and flips. After a thorough explanation of the Sarkisov program, the second part is devoted to the analysis of outputs, specifically minimal models and Mori fibre spaces. The latter are divided into conical fibrations, del Pezzo fibrations and Fano threefolds according to the relative dimension Threefolds (Algebraic geometry) Abelian varieties Erscheint auch als Druck-Ausgabe 978-1-108-84423-9 https://doi.org/10.1017/9781108933988 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Kawakita, Masayuki 1976- Complex algebraic threefolds Threefolds (Algebraic geometry) Abelian varieties |
title | Complex algebraic threefolds |
title_auth | Complex algebraic threefolds |
title_exact_search | Complex algebraic threefolds |
title_exact_search_txtP | Complex algebraic threefolds |
title_full | Complex algebraic threefolds Masayuki Kawakita |
title_fullStr | Complex algebraic threefolds Masayuki Kawakita |
title_full_unstemmed | Complex algebraic threefolds Masayuki Kawakita |
title_short | Complex algebraic threefolds |
title_sort | complex algebraic threefolds |
topic | Threefolds (Algebraic geometry) Abelian varieties |
topic_facet | Threefolds (Algebraic geometry) Abelian varieties |
url | https://doi.org/10.1017/9781108933988 |
work_keys_str_mv | AT kawakitamasayuki complexalgebraicthreefolds |