Solving nonlinear equations with iterative methods: solvers and examples in Julia
This book on solvers for nonlinear equations is a user-oriented guide to algorithms and implementation. It's a sequel to the author's book Solving Nonlinear Equations Using Newton's Method. This book uses Julia and adds new material on pseudo-transient continuation, mixed-precision so...
Gespeichert in:
Vorheriger Titel: | Solving nonlinear equations with Newton’s method |
---|---|
1. Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Philadelphia
SIAM Society for Industrial and Applied Mathematics
[2023]
|
Schriftenreihe: | Fundamentals of algorithms
20 |
Schlagworte: | |
Online-Zugang: | DE-91 DE-20 DE-706 DE-29 Volltext |
Zusammenfassung: | This book on solvers for nonlinear equations is a user-oriented guide to algorithms and implementation. It's a sequel to the author's book Solving Nonlinear Equations Using Newton's Method. This book uses Julia and adds new material on pseudo-transient continuation, mixed-precision solvers, and Anderson acceleration. A Julia package and a suite of Jupyter notebooks support the book. The purpose of the book is to show, via algorithms in pseudocode and Julia with several examples, how one can choose an appropriate iterative method for a given problem and write an efficient solver or apply one written by others. A sequel to the author's Solving Nonlinear Equations with Newton's Methods (SIAM, 2003). |
Beschreibung: | 1 Online-Ressource (xx, 180 Seiten) Diagramme |
ISBN: | 9781611977271 |
DOI: | 10.1137/1.9781611977271 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV049507974 | ||
003 | DE-604 | ||
005 | 20250110 | ||
007 | cr|uuu---uuuuu | ||
008 | 240119s2023 xxu|||| o|||| 00||| eng d | ||
020 | |a 9781611977271 |c online |9 978-1-6119-7727-1 | ||
024 | 7 | |a 10.1137/1.9781611977271 |2 doi | |
035 | |a (OCoLC)1418704719 | ||
035 | |a (DE-599)BVBBV049507974 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-29 |a DE-91 |a DE-706 |a DE-20 | ||
082 | 0 | |a 518/.26 |2 23 | |
084 | |a SK 910 |0 (DE-625)143270: |2 rvk | ||
084 | |a SK 920 |0 (DE-625)143272: |2 rvk | ||
084 | |a ST 250 |0 (DE-625)143626: |2 rvk | ||
084 | |a ST 601 |0 (DE-625)143682: |2 rvk | ||
084 | |a 65H10 |2 msc | ||
084 | |a 65-04 |2 msc | ||
100 | 1 | |a Kelley, C. T. |0 (DE-588)114209642 |4 aut | |
245 | 1 | 0 | |a Solving nonlinear equations with iterative methods |b solvers and examples in Julia |c C.T. Kelley (North Carolina State University, Raleigh, North Carolina) |
264 | 1 | |a Philadelphia |b SIAM Society for Industrial and Applied Mathematics |c [2023] | |
264 | 4 | |c © 2023 | |
300 | |a 1 Online-Ressource (xx, 180 Seiten) |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Fundamentals of algorithms |v 20 | |
520 | 3 | |a This book on solvers for nonlinear equations is a user-oriented guide to algorithms and implementation. It's a sequel to the author's book Solving Nonlinear Equations Using Newton's Method. This book uses Julia and adds new material on pseudo-transient continuation, mixed-precision solvers, and Anderson acceleration. A Julia package and a suite of Jupyter notebooks support the book. The purpose of the book is to show, via algorithms in pseudocode and Julia with several examples, how one can choose an appropriate iterative method for a given problem and write an efficient solver or apply one written by others. A sequel to the author's Solving Nonlinear Equations with Newton's Methods (SIAM, 2003). | |
653 | 0 | |a Iterative methods (Mathematics) | |
653 | 0 | |a Nonlinear theories | |
653 | 0 | |a Julia (Computer program language) | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-61197-726-4 |
780 | 0 | 0 | |i Vorangegangen ist |t Solving nonlinear equations with Newton’s method |z 978-0-89871-889-8 |w (DE-604)BV039747178 |
830 | 0 | |a Fundamentals of algorithms |v 20 |w (DE-604)BV046811132 |9 20 | |
856 | 4 | 0 | |u https://doi.org/10.1137/1.9781611977271 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-72-SIA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034852994 | |
966 | e | |u https://doi.org/10.1137/1.9781611977271 |l DE-91 |p ZDB-72-SIA |q TUM_Paketkauf_2022 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611977271 |l DE-20 |p ZDB-72-SIA |q UBW_Paketkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611977271 |l DE-706 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611977271 |l DE-29 |p ZDB-72-SIA |q UER_Paketkauf |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1820860536880889856 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Kelley, C. T. |
author_GND | (DE-588)114209642 |
author_facet | Kelley, C. T. |
author_role | aut |
author_sort | Kelley, C. T. |
author_variant | c t k ct ctk |
building | Verbundindex |
bvnumber | BV049507974 |
classification_rvk | SK 910 SK 920 ST 250 ST 601 |
collection | ZDB-72-SIA |
ctrlnum | (OCoLC)1418704719 (DE-599)BVBBV049507974 |
dewey-full | 518/.26 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518/.26 |
dewey-search | 518/.26 |
dewey-sort | 3518 226 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1137/1.9781611977271 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV049507974</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20250110</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240119s2023 xxu|||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781611977271</subfield><subfield code="c">online</subfield><subfield code="9">978-1-6119-7727-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1137/1.9781611977271</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1418704719</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049507974</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518/.26</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 910</subfield><subfield code="0">(DE-625)143270:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 601</subfield><subfield code="0">(DE-625)143682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">65H10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">65-04</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kelley, C. T.</subfield><subfield code="0">(DE-588)114209642</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solving nonlinear equations with iterative methods</subfield><subfield code="b">solvers and examples in Julia</subfield><subfield code="c">C.T. Kelley (North Carolina State University, Raleigh, North Carolina)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia</subfield><subfield code="b">SIAM Society for Industrial and Applied Mathematics</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xx, 180 Seiten)</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Fundamentals of algorithms</subfield><subfield code="v">20</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This book on solvers for nonlinear equations is a user-oriented guide to algorithms and implementation. It's a sequel to the author's book Solving Nonlinear Equations Using Newton's Method. This book uses Julia and adds new material on pseudo-transient continuation, mixed-precision solvers, and Anderson acceleration. A Julia package and a suite of Jupyter notebooks support the book. The purpose of the book is to show, via algorithms in pseudocode and Julia with several examples, how one can choose an appropriate iterative method for a given problem and write an efficient solver or apply one written by others. A sequel to the author's Solving Nonlinear Equations with Newton's Methods (SIAM, 2003).</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Iterative methods (Mathematics)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Nonlinear theories</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Julia (Computer program language)</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-61197-726-4</subfield></datafield><datafield tag="780" ind1="0" ind2="0"><subfield code="i">Vorangegangen ist</subfield><subfield code="t">Solving nonlinear equations with Newton’s method</subfield><subfield code="z">978-0-89871-889-8</subfield><subfield code="w">(DE-604)BV039747178</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Fundamentals of algorithms</subfield><subfield code="v">20</subfield><subfield code="w">(DE-604)BV046811132</subfield><subfield code="9">20</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1137/1.9781611977271</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-72-SIA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034852994</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611977271</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="q">TUM_Paketkauf_2022</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611977271</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="q">UBW_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611977271</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611977271</subfield><subfield code="l">DE-29</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="q">UER_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049507974 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:22:41Z |
indexdate | 2025-01-10T11:18:47Z |
institution | BVB |
isbn | 9781611977271 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034852994 |
oclc_num | 1418704719 |
open_access_boolean | |
owner | DE-29 DE-91 DE-BY-TUM DE-706 DE-20 |
owner_facet | DE-29 DE-91 DE-BY-TUM DE-706 DE-20 |
physical | 1 Online-Ressource (xx, 180 Seiten) Diagramme |
psigel | ZDB-72-SIA ZDB-72-SIA TUM_Paketkauf_2022 ZDB-72-SIA UBW_Paketkauf ZDB-72-SIA UER_Paketkauf |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | SIAM Society for Industrial and Applied Mathematics |
record_format | marc |
series | Fundamentals of algorithms |
series2 | Fundamentals of algorithms |
spelling | Kelley, C. T. (DE-588)114209642 aut Solving nonlinear equations with iterative methods solvers and examples in Julia C.T. Kelley (North Carolina State University, Raleigh, North Carolina) Philadelphia SIAM Society for Industrial and Applied Mathematics [2023] © 2023 1 Online-Ressource (xx, 180 Seiten) Diagramme txt rdacontent c rdamedia cr rdacarrier Fundamentals of algorithms 20 This book on solvers for nonlinear equations is a user-oriented guide to algorithms and implementation. It's a sequel to the author's book Solving Nonlinear Equations Using Newton's Method. This book uses Julia and adds new material on pseudo-transient continuation, mixed-precision solvers, and Anderson acceleration. A Julia package and a suite of Jupyter notebooks support the book. The purpose of the book is to show, via algorithms in pseudocode and Julia with several examples, how one can choose an appropriate iterative method for a given problem and write an efficient solver or apply one written by others. A sequel to the author's Solving Nonlinear Equations with Newton's Methods (SIAM, 2003). Iterative methods (Mathematics) Nonlinear theories Julia (Computer program language) Erscheint auch als Druck-Ausgabe 978-1-61197-726-4 Vorangegangen ist Solving nonlinear equations with Newton’s method 978-0-89871-889-8 (DE-604)BV039747178 Fundamentals of algorithms 20 (DE-604)BV046811132 20 https://doi.org/10.1137/1.9781611977271 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Kelley, C. T. Solving nonlinear equations with iterative methods solvers and examples in Julia Fundamentals of algorithms |
title | Solving nonlinear equations with iterative methods solvers and examples in Julia |
title_auth | Solving nonlinear equations with iterative methods solvers and examples in Julia |
title_exact_search | Solving nonlinear equations with iterative methods solvers and examples in Julia |
title_exact_search_txtP | Solving nonlinear equations with iterative methods solvers and examples in Julia |
title_full | Solving nonlinear equations with iterative methods solvers and examples in Julia C.T. Kelley (North Carolina State University, Raleigh, North Carolina) |
title_fullStr | Solving nonlinear equations with iterative methods solvers and examples in Julia C.T. Kelley (North Carolina State University, Raleigh, North Carolina) |
title_full_unstemmed | Solving nonlinear equations with iterative methods solvers and examples in Julia C.T. Kelley (North Carolina State University, Raleigh, North Carolina) |
title_old | Solving nonlinear equations with Newton’s method |
title_short | Solving nonlinear equations with iterative methods |
title_sort | solving nonlinear equations with iterative methods solvers and examples in julia |
title_sub | solvers and examples in Julia |
url | https://doi.org/10.1137/1.9781611977271 |
volume_link | (DE-604)BV046811132 |
work_keys_str_mv | AT kelleyct solvingnonlinearequationswithiterativemethodssolversandexamplesinjulia |