Industrial energy systems handbook:
Industrial Energy Systems Handbook is a supplementary reading resource for candidates undertaking the Association of Energy Engineers (AEE) Certified Industrial Energy Professional (CIEP) program. Understanding how the various industrial systems work is key to identifying savings opportunities. An o...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Gistrup, Denmark
River Publishers
[2022]
|
Schriftenreihe: | River Publishers series in energy engineering and systems
|
Schlagworte: | |
Online-Zugang: | FHI01 URL des Erstveröffentlichers Taylor & Francis |
Zusammenfassung: | Industrial Energy Systems Handbook is a supplementary reading resource for candidates undertaking the Association of Energy Engineers (AEE) Certified Industrial Energy Professional (CIEP) program. Understanding how the various industrial systems work is key to identifying savings opportunities. An overview is given of the global energy situation as at the time of publication which cements the necessity to improve energy intensive processes to become more optimized. Comprehension of opportunities to optimize an industrial energy system starts with the fundamentals of energy, electrical energy and thermal energy, and the importance of energy management systems and industrial energy audits. The main energy consuming systems in industry are covered such as steam, compressed air, motors, drives, fans, pumps, lighting, furnaces, heat exchange systems, and large scale cooling and industrial refrigeration. The instrumentation and control as well as toolkits available rounds off the handbook topics |
Beschreibung: | 1 Online-Ressource (xxxii, 467 Seiten) Illustrationen, Diagramme |
ISBN: | 9788770226592 8770226598 9781003356431 1003356435 9781000818536 1000818535 9781000818505 1000818500 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV049485500 | ||
003 | DE-604 | ||
005 | 20240105 | ||
007 | cr|uuu---uuuuu | ||
008 | 240104s2022 |||| o||u| ||||||eng d | ||
020 | |a 9788770226592 |9 9788770226592 | ||
020 | |a 8770226598 |9 8770226598 | ||
020 | |a 9781003356431 |9 9781003356431 | ||
020 | |a 1003356435 |9 1003356435 | ||
020 | |a 9781000818536 |9 9781000818536 | ||
020 | |a 1000818535 |9 1000818535 | ||
020 | |a 9781000818505 |9 9781000818505 | ||
020 | |a 1000818500 |9 1000818500 | ||
024 | 7 | |a 10.1201/9781003356431 |2 doi | |
035 | |a (OCoLC)1418701003 | ||
035 | |a (DE-599)BVBBV049485500 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-573 | ||
100 | 1 | |a Williams, Albert |e Verfasser |0 (DE-588)1292268573 |4 aut | |
245 | 1 | 0 | |a Industrial energy systems handbook |c Albert Williams |
264 | 1 | |a Gistrup, Denmark |b River Publishers |c [2022] | |
300 | |a 1 Online-Ressource (xxxii, 467 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a River Publishers series in energy engineering and systems | |
505 | 8 | |a List of Contributors xxi List of Figures xxiii List of Tables xxxi Chapter 1 Global Energy Situation on Climate Change 1 1.1 The Negative Impacts and Forecasts of Climate Change 1 1.1.1 Sea levels 1 1.1.2 Ocean currents 3 1.1.3 Coral reefs 4 1.1.4 Ocean acidity 4 1.1.5 Wildlife 5 1.1.6 Hurricanes 5 1.1.7 Floods 6 1.1.8 Fires 6 1.1.9 Forests 6 1.1.10 Droughts 7 1.1.11 Human health 8 1.1.12 Social cost 8 1.2 The Positive Global Trends to meet the Goals of the Paris Agreement 9 1.2.1 Coal 9 1.2.2 Wind 10 1.2.3 Solar 10 1.2.4 Employment 11 1.2.5 Industrial energy efficiency 11 1.3 International Protocols and Conventions 13 1.3.1 Paris agreement 13 1.3.2 Kyoto protocol 16 1.3.3 Bessel convention 16 1.3.4 Montreal protocol 17 1.3.5 Stockholm convention 17 1.4 Resources for this Chapter 17 Chapter 2 Fundamental Principles of Energy 25 2.1 Forms of Energy 25 2.1.1 Definition of energy 25 2.1.2 Different forms of energy and energy flow important to energy audits 26 2.2 Definition of Energy | |
505 | 8 | |a Efficiency 31 2.3 Definition of Energy Density 34 2.4 Units of Energy 35 2.4.1 Calorie 36 2.4.2 Joule 36 2.4.3 Pascal 37 2.4.4 Ampere 37 2.4.5 Ampere-hour 37 2.4.6 Volt-Ampere 37 2.4.7 kiloVolt-Ampere reactive 40 2.4.8 Watt 41 2.4.9 Watt-hour 41 2.4.10 kiloWatt and gigaWatt 42 Chapter 3 Energy Conversion and Efficiency 43 3.1 Energy Conversion, Electricity and Energy Efficiency 43 3.1.1 Total energy, useful and not useful energy 43 3.2 The Four Thermodynamic Laws 49 3.2.1 Definition and interpretation of thermodynamic law nr 0 49 3.2.2 Definition and interpretation of thermodynamic law nr 1 49 3.2.3 Definition and interpretation of thermodynamic law nr 2 50 3.2.4 Definition and interpretation of thermodynamic law nr 3 51 3.3 Energy Performance Criteria 52 3.4 Calculation of Energy Efficiency Performance 55 3.4.1 High level benchmarking metrics 56 3.4.2 Energy use index 56 3.4.3 Energy cost index 57 3.4.4 Productivity metrics 58 3.4.5 Energy efficiency rating, | |
505 | 8 | |a seasonal and integrated 58 3.4.6 System performance metrics 59 3.4.7 Typical system performance indexes 59 3.5 Calculation of Point of Use (PoU) costs 59 3.5.1 Energy conservation and energy conversion (energy flow) 60 3.5.2 Heat flow and heat loss 61 3.5.3 Mass- and energy-balance 61 3.5.4 Energy demand 64 Chapter 4 Fundamentals of Electrical Energy 69 4.1 Electrical Power and Electrical Power Quality 69 4.2 Electrical Voltage 70 4.3 Electrical Current 71 4.4 Electrical Power 72 4.5 Demand 72 4.6 Types of Current Flow 73 4.7 Direct Current 73 4.8 Batteries 74 4.9 Alternating Current 76 4.10 The Different Types of Loads 77 4.10.1 Electrical circuitry 77 4.10.2 Resistive loads 78 4.10.3 Inductive loads 79 4.10.4 Capacitive loads 80 4.11 Electrical Power Factor 81 4.11.1 Lower utility fees 87 4.11.2 Power factor penalty is eliminated 87 4.11.3 Increase voltage levels in the electric system and distribution system 87 4.11.4 Power factor correction in linear loads 88 4.11.5 Power factor | |
505 | 8 | |a correction in non-linear loads 89 4.11.6 Passive power factor correction (PFC) 89 4.11.7 Active power factor correction 90 4.11.8 Dynamic power factor correction 90 4.12 Demand Management 90 4.13 Load Factor 93 4.14 Load Shifting 94 4.14.1 Demand response 94 4.14.2 Dynamic demand 94 4.15 Load Shedding 95 4.16 Total Harmonic Distortion (THD) 95 4.16.1 THD voltage 98 4.16.2 Harmonic voltage distortions 98 4.16.3 Harmonic current distortion 99 4.17 Problems with Harmonics 100 4.18 Measuring Electrical Energy Consumption 101 4.18.1 Calculating power, energy and power factor in alternating current circuits 102 4.18.2 Calculate power, voltage, | |
505 | 8 | |a current and power factor in AC circuits 103 4.18.3 Voltage 106 4.18.4 Current 109 4.18.5 Power 110 4.19 Methods to Correct the Power Factor 113 4.20 Calculating Energy Efficiency for Electrical Equipment 114 4.21 Uninterruptible Power Supply 116 Chapter 5 Fundamentals of Thermal Energy 119 5.1 Types of Thermal Energy: Sensible and Latent 119 5.2 Concept of Useful Thermal Energy 121 5.3 Temperature 122 5.4 Pressure 122 5.5 Phase Changes 124 5.5.1 Evaporation 125 5.5.2 Condensation 125 5.5.3 Steam 125 5.5.4 Moist air and humidity 125 5.6 Psychrometric Charts 128 5.6.1 Air temperature 130 5.6.2 Relative humidity 131 5.6.3 Mean radiant temperature 131 5.6.4 Air flow movement 132 5.6.5 Infiltration loads in buildings 132 5.7 Calculating Thermal Energy 133 5.7.1 Heat loss calculations 134 5.8 Energy Efficiency Measures in Thermal Processes 136 Chapter 6 Energy Management Systems and Industrial Energy Audits 139 6.1 Energy Management Systems (EnMS) 139 6.1.1 Overview 139 6.1.2 Energy | |
505 | 8 | |a performance indicators 141 6.1.3 Calculation of energy efficiency performance 143 6.1.4 High level benchmarking metrics 145 6.2 Industrial Energy Audits 146 6.2.1 The types of energy audits 150 6.2.2 The energy audit process 150 Chapter 7 Instrumentation and Control 159 7.1 The Need for Automated Control 159 7.2 Control Components 160 7.2.1 Switches 161 7.2.2 Sensors 161 7.2.3 Transducers 163 7.2.4 Controllers 164 7.2.5 Control loops 165 7.2.6 Control devices 168 7.3 Control Modes 168 7.3.1 On/Off control 169 7.3.2 Floating control 169 7.3.3 Proportional only control (P) 170 7.3.4 Proportional-plus-integral control (PI) 170 7.3.5 Proportional-integral-derivative control (PID) 170 7.4 Sensor Types 170 7.4.1 Thermostats 171 7.4.2 Electric meter 171 7.4.3 Smoke sensors/detectors 171 7.4.4 Light sensors 171 7.4.5 Occupancy sensors 172 7.4.6 Carbon dioxide sensors 172 7.4.7 Carbon monoxide sensors 172 7.5 The Principles of Efficiency with Control and Control Applications 172 7.5.1 | |
505 | 8 | |a Efficiency through control 172 7.5.2 Efficiency through control applications 174 Chapter 8 Energy Investigation Support Tools 179 8.1 Measurement of Power 180 8.2 Measurement of Temperature 182 8.3 Measurement of Pressure 183 8.4 Measurement of Humidity 185 8.5 Measurement of Heat Capacity and Heat Storage 185 8.6 Combustion Measurement 187 8.7 Measurements of Air Velocity 187 8.8 Measurements of Flow 188 8.9 Measurements of Compressed Air Systems 190 8.9.1 Compressed air flow measurements 191 8.9.2 Leak detection in compressed air system 192 Chapter 9 Fuels, Furnaces, | |
505 | 8 | |a and Fired Equipment 195 9.1 Fuel Fired Systems 195 9.2 Fuels 196 9.2.1 Properties of solid fuels 196 9.2.2 Properties of liquid fuels (Oil) 198 9.2.1 Properties of gaseous fuels 199 9.3 Combustion 200 9.3.1 Combustion of carbon 200 9.3.2 Combustion air requirement 201 9.4 Optimizing Combustion Conditions 201 9.5 Fuel Fired Equipment and Applications 202 9.5.1 Furnaces 202 9.5.2 Dryers 203 9.5.3 Kilns 204 9.6 Flue Gas and Other Losses in Process Furnaces, | |
505 | 8 | |a Dryers and Kilns 204 9.7 Burners 204 9.7.1 Liquid fuel combustion 205 9.7.2 Pressure jet burners 205 9.7.3 Rotary cup burners 205 9.7.4 Air blast burners 206 9.7.5 Common problems in burners 206 9.8 Thermal Efficiencies 208 9.9 Air Pollution Control - Process and Equipment 209 9.9.1 Greenhouse gas effect 209 9.9.2 Acid rain 209 9.9.3 Ground level ozone 210 9.9.4 Reduction of pollutant emissions from combustion process 210 9.9.5 Energy efficiency improvements 210 9.9.6 Refinement to the combustion process 210 9.9.7 Flue gas treatment 211 9.9.8 Fuel switching 211 9.10 Energy Efficiency Measures 211 9.10.1 Maintain proper burner adjustment 211 9.10.2 Check excess air and combustibles in the flue gas 211 9.10.3 Keep heat exchange surfaces clean 211 9.10.4 Replace/Repair missing and damaged insulation 212 9.10.5 Check furnace pressure regularly 212 9.10.6 Schedule production to operate furnaces at or near maximum output 212 9.10.7 Replace damaged furnace doors or covers 212 9.10.8 Install | |
505 | 8 | |a adequate monitoring instrumentation 212 9.10.9 Recover heat from equipment cooling water 212 9.10.10 Install a heat exchanger in the flue gas outlet 213 Chapter 10 Heat Exchange Systems 215 10.1 Concepts of Conduction, | |
505 | 8 | |a Convection and Radiation 215 10.1.1 Conduction 215 10.1.2 Convection 217 10.1.3 Thermal radiation 218 10.2 Specific Heat Capacity 221 10.3 Insulation 222 10.3.1 Heat loss through a wall 225 10.3.2 Heat loss from a pipe 225 10.3.3 Heat loss from an industrial freezer 226 10.3.4 Insulating materials 228 10.3.5 Protective coverings and finishes 231 10.3.6 Accessories 233 10.3.7 Insulation energy efficiency measures 234 10.3.8 Vapor loss from open processing tanks 234 10.4 Heat Recovery with Heat Exchangers 236 10.4.1 Shell and tube 237 10.4.2 Plate and frame 238 10.4.3 Heat wheel 238 10.4.4 Heat pipes 238 10.4.5 Run around system 239 10.4.6 Plate or Baffle type heat exchanger 240 10.4.7 Heat pumps 241 10.4.8 Waste heat boilers 242 10.4.9 Recuperators 242 10.4.10 Heat recovery ventilation systems 243 10.4.11 Mechanical and natural ventilation 245 Chapter 11 Steam Systems 247 11.1 Generation 248 11.1.1 Steam 248 11.1.2 Sensible heat and latent heat 249 11.1.3 Steam quality 252 11.1.4 | |
505 | 8 | |a Superheated steam 252 11.1.5 Example of the effects of increasing surface area 253 11.1.6 Boiler types 253 11.1.7 Combustion losses 255 11.1.8 Blowdown losses 255 11.1.9 Feedwater treatment 259 11.1.10 Condensate tanks 259 11.1.11 Flash tanks 260 11.1.12 Flash steam heat recovery 260 11.2 Distribution 261 11.2.1 Condensate return 264 11.2.2 Steam leaks 267 11.2.3 Insulation 268 11.2.4 Steam pressure 271 11.2.5 Steam pipes 273 11.2.6 Heat transfer from steam 280 11.2.7 Steam traps 280 11.2.8 Routine maintenance of traps 288 11.3 End-Use 289 11.4 Energy Efficiency Measures 290 11.4.1 Boiler house ⁰́₃ Operation opportunities 290 11.4.2 Boiler house ⁰́₃ Maintenance opportunities 290 11.4.3 Boiler house ⁰́₃ Retrofit opportunities 291 11.4.4 Steam distribution system opportunities 291 11.4.5 End-use equipment opportunities 292 Chapter 12 Motors and Drives 301 12.1 Electric Motor Types 301 12.1.1 Direct-Current motors (DC) 301 12.1.2 Synchronous motors 30 ... | |
520 | 3 | |a Industrial Energy Systems Handbook is a supplementary reading resource for candidates undertaking the Association of Energy Engineers (AEE) Certified Industrial Energy Professional (CIEP) program. Understanding how the various industrial systems work is key to identifying savings opportunities. An overview is given of the global energy situation as at the time of publication which cements the necessity to improve energy intensive processes to become more optimized. Comprehension of opportunities to optimize an industrial energy system starts with the fundamentals of energy, electrical energy and thermal energy, and the importance of energy management systems and industrial energy audits. The main energy consuming systems in industry are covered such as steam, compressed air, motors, drives, fans, pumps, lighting, furnaces, heat exchange systems, and large scale cooling and industrial refrigeration. The instrumentation and control as well as toolkits available rounds off the handbook topics | |
653 | 0 | |a Power resources | |
653 | 0 | |a Engineering | |
653 | 0 | |a Ressources énergétiques | |
653 | 0 | |a Ingénierie | |
653 | 0 | |a energy resources | |
653 | 0 | |a engineering | |
653 | 0 | |a TECHNOLOGY / Power Resources | |
653 | 0 | |a TECHNOLOGY / Electricity | |
653 | 0 | |a BUSINESS & ECONOMICS / Facility Management | |
653 | 0 | |a Engineering | |
653 | 0 | |a Power resources | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9788770226608 |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/book/9875231 |x Aggregator |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 0 | |u https://www.taylorfrancis.com/books/9781003356431 |3 Taylor & Francis |
912 | |a ZDB-37-RPEB | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034830898 | ||
966 | e | |u https://ieeexplore.ieee.org/book/9875231 |l FHI01 |p ZDB-37-RPEB |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804186279683817473 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Williams, Albert |
author_GND | (DE-588)1292268573 |
author_facet | Williams, Albert |
author_role | aut |
author_sort | Williams, Albert |
author_variant | a w aw |
building | Verbundindex |
bvnumber | BV049485500 |
collection | ZDB-37-RPEB |
contents | List of Contributors xxi List of Figures xxiii List of Tables xxxi Chapter 1 Global Energy Situation on Climate Change 1 1.1 The Negative Impacts and Forecasts of Climate Change 1 1.1.1 Sea levels 1 1.1.2 Ocean currents 3 1.1.3 Coral reefs 4 1.1.4 Ocean acidity 4 1.1.5 Wildlife 5 1.1.6 Hurricanes 5 1.1.7 Floods 6 1.1.8 Fires 6 1.1.9 Forests 6 1.1.10 Droughts 7 1.1.11 Human health 8 1.1.12 Social cost 8 1.2 The Positive Global Trends to meet the Goals of the Paris Agreement 9 1.2.1 Coal 9 1.2.2 Wind 10 1.2.3 Solar 10 1.2.4 Employment 11 1.2.5 Industrial energy efficiency 11 1.3 International Protocols and Conventions 13 1.3.1 Paris agreement 13 1.3.2 Kyoto protocol 16 1.3.3 Bessel convention 16 1.3.4 Montreal protocol 17 1.3.5 Stockholm convention 17 1.4 Resources for this Chapter 17 Chapter 2 Fundamental Principles of Energy 25 2.1 Forms of Energy 25 2.1.1 Definition of energy 25 2.1.2 Different forms of energy and energy flow important to energy audits 26 2.2 Definition of Energy Efficiency 31 2.3 Definition of Energy Density 34 2.4 Units of Energy 35 2.4.1 Calorie 36 2.4.2 Joule 36 2.4.3 Pascal 37 2.4.4 Ampere 37 2.4.5 Ampere-hour 37 2.4.6 Volt-Ampere 37 2.4.7 kiloVolt-Ampere reactive 40 2.4.8 Watt 41 2.4.9 Watt-hour 41 2.4.10 kiloWatt and gigaWatt 42 Chapter 3 Energy Conversion and Efficiency 43 3.1 Energy Conversion, Electricity and Energy Efficiency 43 3.1.1 Total energy, useful and not useful energy 43 3.2 The Four Thermodynamic Laws 49 3.2.1 Definition and interpretation of thermodynamic law nr 0 49 3.2.2 Definition and interpretation of thermodynamic law nr 1 49 3.2.3 Definition and interpretation of thermodynamic law nr 2 50 3.2.4 Definition and interpretation of thermodynamic law nr 3 51 3.3 Energy Performance Criteria 52 3.4 Calculation of Energy Efficiency Performance 55 3.4.1 High level benchmarking metrics 56 3.4.2 Energy use index 56 3.4.3 Energy cost index 57 3.4.4 Productivity metrics 58 3.4.5 Energy efficiency rating, seasonal and integrated 58 3.4.6 System performance metrics 59 3.4.7 Typical system performance indexes 59 3.5 Calculation of Point of Use (PoU) costs 59 3.5.1 Energy conservation and energy conversion (energy flow) 60 3.5.2 Heat flow and heat loss 61 3.5.3 Mass- and energy-balance 61 3.5.4 Energy demand 64 Chapter 4 Fundamentals of Electrical Energy 69 4.1 Electrical Power and Electrical Power Quality 69 4.2 Electrical Voltage 70 4.3 Electrical Current 71 4.4 Electrical Power 72 4.5 Demand 72 4.6 Types of Current Flow 73 4.7 Direct Current 73 4.8 Batteries 74 4.9 Alternating Current 76 4.10 The Different Types of Loads 77 4.10.1 Electrical circuitry 77 4.10.2 Resistive loads 78 4.10.3 Inductive loads 79 4.10.4 Capacitive loads 80 4.11 Electrical Power Factor 81 4.11.1 Lower utility fees 87 4.11.2 Power factor penalty is eliminated 87 4.11.3 Increase voltage levels in the electric system and distribution system 87 4.11.4 Power factor correction in linear loads 88 4.11.5 Power factor correction in non-linear loads 89 4.11.6 Passive power factor correction (PFC) 89 4.11.7 Active power factor correction 90 4.11.8 Dynamic power factor correction 90 4.12 Demand Management 90 4.13 Load Factor 93 4.14 Load Shifting 94 4.14.1 Demand response 94 4.14.2 Dynamic demand 94 4.15 Load Shedding 95 4.16 Total Harmonic Distortion (THD) 95 4.16.1 THD voltage 98 4.16.2 Harmonic voltage distortions 98 4.16.3 Harmonic current distortion 99 4.17 Problems with Harmonics 100 4.18 Measuring Electrical Energy Consumption 101 4.18.1 Calculating power, energy and power factor in alternating current circuits 102 4.18.2 Calculate power, voltage, current and power factor in AC circuits 103 4.18.3 Voltage 106 4.18.4 Current 109 4.18.5 Power 110 4.19 Methods to Correct the Power Factor 113 4.20 Calculating Energy Efficiency for Electrical Equipment 114 4.21 Uninterruptible Power Supply 116 Chapter 5 Fundamentals of Thermal Energy 119 5.1 Types of Thermal Energy: Sensible and Latent 119 5.2 Concept of Useful Thermal Energy 121 5.3 Temperature 122 5.4 Pressure 122 5.5 Phase Changes 124 5.5.1 Evaporation 125 5.5.2 Condensation 125 5.5.3 Steam 125 5.5.4 Moist air and humidity 125 5.6 Psychrometric Charts 128 5.6.1 Air temperature 130 5.6.2 Relative humidity 131 5.6.3 Mean radiant temperature 131 5.6.4 Air flow movement 132 5.6.5 Infiltration loads in buildings 132 5.7 Calculating Thermal Energy 133 5.7.1 Heat loss calculations 134 5.8 Energy Efficiency Measures in Thermal Processes 136 Chapter 6 Energy Management Systems and Industrial Energy Audits 139 6.1 Energy Management Systems (EnMS) 139 6.1.1 Overview 139 6.1.2 Energy performance indicators 141 6.1.3 Calculation of energy efficiency performance 143 6.1.4 High level benchmarking metrics 145 6.2 Industrial Energy Audits 146 6.2.1 The types of energy audits 150 6.2.2 The energy audit process 150 Chapter 7 Instrumentation and Control 159 7.1 The Need for Automated Control 159 7.2 Control Components 160 7.2.1 Switches 161 7.2.2 Sensors 161 7.2.3 Transducers 163 7.2.4 Controllers 164 7.2.5 Control loops 165 7.2.6 Control devices 168 7.3 Control Modes 168 7.3.1 On/Off control 169 7.3.2 Floating control 169 7.3.3 Proportional only control (P) 170 7.3.4 Proportional-plus-integral control (PI) 170 7.3.5 Proportional-integral-derivative control (PID) 170 7.4 Sensor Types 170 7.4.1 Thermostats 171 7.4.2 Electric meter 171 7.4.3 Smoke sensors/detectors 171 7.4.4 Light sensors 171 7.4.5 Occupancy sensors 172 7.4.6 Carbon dioxide sensors 172 7.4.7 Carbon monoxide sensors 172 7.5 The Principles of Efficiency with Control and Control Applications 172 7.5.1 Efficiency through control 172 7.5.2 Efficiency through control applications 174 Chapter 8 Energy Investigation Support Tools 179 8.1 Measurement of Power 180 8.2 Measurement of Temperature 182 8.3 Measurement of Pressure 183 8.4 Measurement of Humidity 185 8.5 Measurement of Heat Capacity and Heat Storage 185 8.6 Combustion Measurement 187 8.7 Measurements of Air Velocity 187 8.8 Measurements of Flow 188 8.9 Measurements of Compressed Air Systems 190 8.9.1 Compressed air flow measurements 191 8.9.2 Leak detection in compressed air system 192 Chapter 9 Fuels, Furnaces, and Fired Equipment 195 9.1 Fuel Fired Systems 195 9.2 Fuels 196 9.2.1 Properties of solid fuels 196 9.2.2 Properties of liquid fuels (Oil) 198 9.2.1 Properties of gaseous fuels 199 9.3 Combustion 200 9.3.1 Combustion of carbon 200 9.3.2 Combustion air requirement 201 9.4 Optimizing Combustion Conditions 201 9.5 Fuel Fired Equipment and Applications 202 9.5.1 Furnaces 202 9.5.2 Dryers 203 9.5.3 Kilns 204 9.6 Flue Gas and Other Losses in Process Furnaces, Dryers and Kilns 204 9.7 Burners 204 9.7.1 Liquid fuel combustion 205 9.7.2 Pressure jet burners 205 9.7.3 Rotary cup burners 205 9.7.4 Air blast burners 206 9.7.5 Common problems in burners 206 9.8 Thermal Efficiencies 208 9.9 Air Pollution Control - Process and Equipment 209 9.9.1 Greenhouse gas effect 209 9.9.2 Acid rain 209 9.9.3 Ground level ozone 210 9.9.4 Reduction of pollutant emissions from combustion process 210 9.9.5 Energy efficiency improvements 210 9.9.6 Refinement to the combustion process 210 9.9.7 Flue gas treatment 211 9.9.8 Fuel switching 211 9.10 Energy Efficiency Measures 211 9.10.1 Maintain proper burner adjustment 211 9.10.2 Check excess air and combustibles in the flue gas 211 9.10.3 Keep heat exchange surfaces clean 211 9.10.4 Replace/Repair missing and damaged insulation 212 9.10.5 Check furnace pressure regularly 212 9.10.6 Schedule production to operate furnaces at or near maximum output 212 9.10.7 Replace damaged furnace doors or covers 212 9.10.8 Install adequate monitoring instrumentation 212 9.10.9 Recover heat from equipment cooling water 212 9.10.10 Install a heat exchanger in the flue gas outlet 213 Chapter 10 Heat Exchange Systems 215 10.1 Concepts of Conduction, Convection and Radiation 215 10.1.1 Conduction 215 10.1.2 Convection 217 10.1.3 Thermal radiation 218 10.2 Specific Heat Capacity 221 10.3 Insulation 222 10.3.1 Heat loss through a wall 225 10.3.2 Heat loss from a pipe 225 10.3.3 Heat loss from an industrial freezer 226 10.3.4 Insulating materials 228 10.3.5 Protective coverings and finishes 231 10.3.6 Accessories 233 10.3.7 Insulation energy efficiency measures 234 10.3.8 Vapor loss from open processing tanks 234 10.4 Heat Recovery with Heat Exchangers 236 10.4.1 Shell and tube 237 10.4.2 Plate and frame 238 10.4.3 Heat wheel 238 10.4.4 Heat pipes 238 10.4.5 Run around system 239 10.4.6 Plate or Baffle type heat exchanger 240 10.4.7 Heat pumps 241 10.4.8 Waste heat boilers 242 10.4.9 Recuperators 242 10.4.10 Heat recovery ventilation systems 243 10.4.11 Mechanical and natural ventilation 245 Chapter 11 Steam Systems 247 11.1 Generation 248 11.1.1 Steam 248 11.1.2 Sensible heat and latent heat 249 11.1.3 Steam quality 252 11.1.4 Superheated steam 252 11.1.5 Example of the effects of increasing surface area 253 11.1.6 Boiler types 253 11.1.7 Combustion losses 255 11.1.8 Blowdown losses 255 11.1.9 Feedwater treatment 259 11.1.10 Condensate tanks 259 11.1.11 Flash tanks 260 11.1.12 Flash steam heat recovery 260 11.2 Distribution 261 11.2.1 Condensate return 264 11.2.2 Steam leaks 267 11.2.3 Insulation 268 11.2.4 Steam pressure 271 11.2.5 Steam pipes 273 11.2.6 Heat transfer from steam 280 11.2.7 Steam traps 280 11.2.8 Routine maintenance of traps 288 11.3 End-Use 289 11.4 Energy Efficiency Measures 290 11.4.1 Boiler house ⁰́₃ Operation opportunities 290 11.4.2 Boiler house ⁰́₃ Maintenance opportunities 290 11.4.3 Boiler house ⁰́₃ Retrofit opportunities 291 11.4.4 Steam distribution system opportunities 291 11.4.5 End-use equipment opportunities 292 Chapter 12 Motors and Drives 301 12.1 Electric Motor Types 301 12.1.1 Direct-Current motors (DC) 301 12.1.2 Synchronous motors 30 ... |
ctrlnum | (OCoLC)1418701003 (DE-599)BVBBV049485500 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>13030nmm a2200709 c 4500</leader><controlfield tag="001">BV049485500</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240105 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">240104s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9788770226592</subfield><subfield code="9">9788770226592</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">8770226598</subfield><subfield code="9">8770226598</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781003356431</subfield><subfield code="9">9781003356431</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1003356435</subfield><subfield code="9">1003356435</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000818536</subfield><subfield code="9">9781000818536</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1000818535</subfield><subfield code="9">1000818535</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000818505</subfield><subfield code="9">9781000818505</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1000818500</subfield><subfield code="9">1000818500</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1201/9781003356431</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1418701003</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049485500</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Williams, Albert</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1292268573</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Industrial energy systems handbook</subfield><subfield code="c">Albert Williams</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Gistrup, Denmark</subfield><subfield code="b">River Publishers</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xxxii, 467 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">River Publishers series in energy engineering and systems</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">List of Contributors xxi List of Figures xxiii List of Tables xxxi Chapter 1 Global Energy Situation on Climate Change 1 1.1 The Negative Impacts and Forecasts of Climate Change 1 1.1.1 Sea levels 1 1.1.2 Ocean currents 3 1.1.3 Coral reefs 4 1.1.4 Ocean acidity 4 1.1.5 Wildlife 5 1.1.6 Hurricanes 5 1.1.7 Floods 6 1.1.8 Fires 6 1.1.9 Forests 6 1.1.10 Droughts 7 1.1.11 Human health 8 1.1.12 Social cost 8 1.2 The Positive Global Trends to meet the Goals of the Paris Agreement 9 1.2.1 Coal 9 1.2.2 Wind 10 1.2.3 Solar 10 1.2.4 Employment 11 1.2.5 Industrial energy efficiency 11 1.3 International Protocols and Conventions 13 1.3.1 Paris agreement 13 1.3.2 Kyoto protocol 16 1.3.3 Bessel convention 16 1.3.4 Montreal protocol 17 1.3.5 Stockholm convention 17 1.4 Resources for this Chapter 17 Chapter 2 Fundamental Principles of Energy 25 2.1 Forms of Energy 25 2.1.1 Definition of energy 25 2.1.2 Different forms of energy and energy flow important to energy audits 26 2.2 Definition of Energy </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Efficiency 31 2.3 Definition of Energy Density 34 2.4 Units of Energy 35 2.4.1 Calorie 36 2.4.2 Joule 36 2.4.3 Pascal 37 2.4.4 Ampere 37 2.4.5 Ampere-hour 37 2.4.6 Volt-Ampere 37 2.4.7 kiloVolt-Ampere reactive 40 2.4.8 Watt 41 2.4.9 Watt-hour 41 2.4.10 kiloWatt and gigaWatt 42 Chapter 3 Energy Conversion and Efficiency 43 3.1 Energy Conversion, Electricity and Energy Efficiency 43 3.1.1 Total energy, useful and not useful energy 43 3.2 The Four Thermodynamic Laws 49 3.2.1 Definition and interpretation of thermodynamic law nr 0 49 3.2.2 Definition and interpretation of thermodynamic law nr 1 49 3.2.3 Definition and interpretation of thermodynamic law nr 2 50 3.2.4 Definition and interpretation of thermodynamic law nr 3 51 3.3 Energy Performance Criteria 52 3.4 Calculation of Energy Efficiency Performance 55 3.4.1 High level benchmarking metrics 56 3.4.2 Energy use index 56 3.4.3 Energy cost index 57 3.4.4 Productivity metrics 58 3.4.5 Energy efficiency rating, </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">seasonal and integrated 58 3.4.6 System performance metrics 59 3.4.7 Typical system performance indexes 59 3.5 Calculation of Point of Use (PoU) costs 59 3.5.1 Energy conservation and energy conversion (energy flow) 60 3.5.2 Heat flow and heat loss 61 3.5.3 Mass- and energy-balance 61 3.5.4 Energy demand 64 Chapter 4 Fundamentals of Electrical Energy 69 4.1 Electrical Power and Electrical Power Quality 69 4.2 Electrical Voltage 70 4.3 Electrical Current 71 4.4 Electrical Power 72 4.5 Demand 72 4.6 Types of Current Flow 73 4.7 Direct Current 73 4.8 Batteries 74 4.9 Alternating Current 76 4.10 The Different Types of Loads 77 4.10.1 Electrical circuitry 77 4.10.2 Resistive loads 78 4.10.3 Inductive loads 79 4.10.4 Capacitive loads 80 4.11 Electrical Power Factor 81 4.11.1 Lower utility fees 87 4.11.2 Power factor penalty is eliminated 87 4.11.3 Increase voltage levels in the electric system and distribution system 87 4.11.4 Power factor correction in linear loads 88 4.11.5 Power factor </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">correction in non-linear loads 89 4.11.6 Passive power factor correction (PFC) 89 4.11.7 Active power factor correction 90 4.11.8 Dynamic power factor correction 90 4.12 Demand Management 90 4.13 Load Factor 93 4.14 Load Shifting 94 4.14.1 Demand response 94 4.14.2 Dynamic demand 94 4.15 Load Shedding 95 4.16 Total Harmonic Distortion (THD) 95 4.16.1 THD voltage 98 4.16.2 Harmonic voltage distortions 98 4.16.3 Harmonic current distortion 99 4.17 Problems with Harmonics 100 4.18 Measuring Electrical Energy Consumption 101 4.18.1 Calculating power, energy and power factor in alternating current circuits 102 4.18.2 Calculate power, voltage, </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">current and power factor in AC circuits 103 4.18.3 Voltage 106 4.18.4 Current 109 4.18.5 Power 110 4.19 Methods to Correct the Power Factor 113 4.20 Calculating Energy Efficiency for Electrical Equipment 114 4.21 Uninterruptible Power Supply 116 Chapter 5 Fundamentals of Thermal Energy 119 5.1 Types of Thermal Energy: Sensible and Latent 119 5.2 Concept of Useful Thermal Energy 121 5.3 Temperature 122 5.4 Pressure 122 5.5 Phase Changes 124 5.5.1 Evaporation 125 5.5.2 Condensation 125 5.5.3 Steam 125 5.5.4 Moist air and humidity 125 5.6 Psychrometric Charts 128 5.6.1 Air temperature 130 5.6.2 Relative humidity 131 5.6.3 Mean radiant temperature 131 5.6.4 Air flow movement 132 5.6.5 Infiltration loads in buildings 132 5.7 Calculating Thermal Energy 133 5.7.1 Heat loss calculations 134 5.8 Energy Efficiency Measures in Thermal Processes 136 Chapter 6 Energy Management Systems and Industrial Energy Audits 139 6.1 Energy Management Systems (EnMS) 139 6.1.1 Overview 139 6.1.2 Energy </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">performance indicators 141 6.1.3 Calculation of energy efficiency performance 143 6.1.4 High level benchmarking metrics 145 6.2 Industrial Energy Audits 146 6.2.1 The types of energy audits 150 6.2.2 The energy audit process 150 Chapter 7 Instrumentation and Control 159 7.1 The Need for Automated Control 159 7.2 Control Components 160 7.2.1 Switches 161 7.2.2 Sensors 161 7.2.3 Transducers 163 7.2.4 Controllers 164 7.2.5 Control loops 165 7.2.6 Control devices 168 7.3 Control Modes 168 7.3.1 On/Off control 169 7.3.2 Floating control 169 7.3.3 Proportional only control (P) 170 7.3.4 Proportional-plus-integral control (PI) 170 7.3.5 Proportional-integral-derivative control (PID) 170 7.4 Sensor Types 170 7.4.1 Thermostats 171 7.4.2 Electric meter 171 7.4.3 Smoke sensors/detectors 171 7.4.4 Light sensors 171 7.4.5 Occupancy sensors 172 7.4.6 Carbon dioxide sensors 172 7.4.7 Carbon monoxide sensors 172 7.5 The Principles of Efficiency with Control and Control Applications 172 7.5.1 </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Efficiency through control 172 7.5.2 Efficiency through control applications 174 Chapter 8 Energy Investigation Support Tools 179 8.1 Measurement of Power 180 8.2 Measurement of Temperature 182 8.3 Measurement of Pressure 183 8.4 Measurement of Humidity 185 8.5 Measurement of Heat Capacity and Heat Storage 185 8.6 Combustion Measurement 187 8.7 Measurements of Air Velocity 187 8.8 Measurements of Flow 188 8.9 Measurements of Compressed Air Systems 190 8.9.1 Compressed air flow measurements 191 8.9.2 Leak detection in compressed air system 192 Chapter 9 Fuels, Furnaces, </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">and Fired Equipment 195 9.1 Fuel Fired Systems 195 9.2 Fuels 196 9.2.1 Properties of solid fuels 196 9.2.2 Properties of liquid fuels (Oil) 198 9.2.1 Properties of gaseous fuels 199 9.3 Combustion 200 9.3.1 Combustion of carbon 200 9.3.2 Combustion air requirement 201 9.4 Optimizing Combustion Conditions 201 9.5 Fuel Fired Equipment and Applications 202 9.5.1 Furnaces 202 9.5.2 Dryers 203 9.5.3 Kilns 204 9.6 Flue Gas and Other Losses in Process Furnaces, </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Dryers and Kilns 204 9.7 Burners 204 9.7.1 Liquid fuel combustion 205 9.7.2 Pressure jet burners 205 9.7.3 Rotary cup burners 205 9.7.4 Air blast burners 206 9.7.5 Common problems in burners 206 9.8 Thermal Efficiencies 208 9.9 Air Pollution Control - Process and Equipment 209 9.9.1 Greenhouse gas effect 209 9.9.2 Acid rain 209 9.9.3 Ground level ozone 210 9.9.4 Reduction of pollutant emissions from combustion process 210 9.9.5 Energy efficiency improvements 210 9.9.6 Refinement to the combustion process 210 9.9.7 Flue gas treatment 211 9.9.8 Fuel switching 211 9.10 Energy Efficiency Measures 211 9.10.1 Maintain proper burner adjustment 211 9.10.2 Check excess air and combustibles in the flue gas 211 9.10.3 Keep heat exchange surfaces clean 211 9.10.4 Replace/Repair missing and damaged insulation 212 9.10.5 Check furnace pressure regularly 212 9.10.6 Schedule production to operate furnaces at or near maximum output 212 9.10.7 Replace damaged furnace doors or covers 212 9.10.8 Install </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">adequate monitoring instrumentation 212 9.10.9 Recover heat from equipment cooling water 212 9.10.10 Install a heat exchanger in the flue gas outlet 213 Chapter 10 Heat Exchange Systems 215 10.1 Concepts of Conduction, </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Convection and Radiation 215 10.1.1 Conduction 215 10.1.2 Convection 217 10.1.3 Thermal radiation 218 10.2 Specific Heat Capacity 221 10.3 Insulation 222 10.3.1 Heat loss through a wall 225 10.3.2 Heat loss from a pipe 225 10.3.3 Heat loss from an industrial freezer 226 10.3.4 Insulating materials 228 10.3.5 Protective coverings and finishes 231 10.3.6 Accessories 233 10.3.7 Insulation energy efficiency measures 234 10.3.8 Vapor loss from open processing tanks 234 10.4 Heat Recovery with Heat Exchangers 236 10.4.1 Shell and tube 237 10.4.2 Plate and frame 238 10.4.3 Heat wheel 238 10.4.4 Heat pipes 238 10.4.5 Run around system 239 10.4.6 Plate or Baffle type heat exchanger 240 10.4.7 Heat pumps 241 10.4.8 Waste heat boilers 242 10.4.9 Recuperators 242 10.4.10 Heat recovery ventilation systems 243 10.4.11 Mechanical and natural ventilation 245 Chapter 11 Steam Systems 247 11.1 Generation 248 11.1.1 Steam 248 11.1.2 Sensible heat and latent heat 249 11.1.3 Steam quality 252 11.1.4 </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Superheated steam 252 11.1.5 Example of the effects of increasing surface area 253 11.1.6 Boiler types 253 11.1.7 Combustion losses 255 11.1.8 Blowdown losses 255 11.1.9 Feedwater treatment 259 11.1.10 Condensate tanks 259 11.1.11 Flash tanks 260 11.1.12 Flash steam heat recovery 260 11.2 Distribution 261 11.2.1 Condensate return 264 11.2.2 Steam leaks 267 11.2.3 Insulation 268 11.2.4 Steam pressure 271 11.2.5 Steam pipes 273 11.2.6 Heat transfer from steam 280 11.2.7 Steam traps 280 11.2.8 Routine maintenance of traps 288 11.3 End-Use 289 11.4 Energy Efficiency Measures 290 11.4.1 Boiler house ⁰́₃ Operation opportunities 290 11.4.2 Boiler house ⁰́₃ Maintenance opportunities 290 11.4.3 Boiler house ⁰́₃ Retrofit opportunities 291 11.4.4 Steam distribution system opportunities 291 11.4.5 End-use equipment opportunities 292 Chapter 12 Motors and Drives 301 12.1 Electric Motor Types 301 12.1.1 Direct-Current motors (DC) 301 12.1.2 Synchronous motors 30 ...</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Industrial Energy Systems Handbook is a supplementary reading resource for candidates undertaking the Association of Energy Engineers (AEE) Certified Industrial Energy Professional (CIEP) program. Understanding how the various industrial systems work is key to identifying savings opportunities. An overview is given of the global energy situation as at the time of publication which cements the necessity to improve energy intensive processes to become more optimized. Comprehension of opportunities to optimize an industrial energy system starts with the fundamentals of energy, electrical energy and thermal energy, and the importance of energy management systems and industrial energy audits. The main energy consuming systems in industry are covered such as steam, compressed air, motors, drives, fans, pumps, lighting, furnaces, heat exchange systems, and large scale cooling and industrial refrigeration. The instrumentation and control as well as toolkits available rounds off the handbook topics</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Power resources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Ressources énergétiques</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Ingénierie</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">energy resources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">TECHNOLOGY / Power Resources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">TECHNOLOGY / Electricity</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">BUSINESS & ECONOMICS / Facility Management</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Power resources</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9788770226608</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/book/9875231</subfield><subfield code="x">Aggregator</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.taylorfrancis.com/books/9781003356431</subfield><subfield code="3">Taylor & Francis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-37-RPEB</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034830898</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/book/9875231</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-37-RPEB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049485500 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:18:53Z |
indexdate | 2024-07-10T10:08:36Z |
institution | BVB |
isbn | 9788770226592 8770226598 9781003356431 1003356435 9781000818536 1000818535 9781000818505 1000818500 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034830898 |
oclc_num | 1418701003 |
open_access_boolean | |
owner | DE-573 |
owner_facet | DE-573 |
physical | 1 Online-Ressource (xxxii, 467 Seiten) Illustrationen, Diagramme |
psigel | ZDB-37-RPEB |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | River Publishers |
record_format | marc |
series2 | River Publishers series in energy engineering and systems |
spelling | Williams, Albert Verfasser (DE-588)1292268573 aut Industrial energy systems handbook Albert Williams Gistrup, Denmark River Publishers [2022] 1 Online-Ressource (xxxii, 467 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier River Publishers series in energy engineering and systems List of Contributors xxi List of Figures xxiii List of Tables xxxi Chapter 1 Global Energy Situation on Climate Change 1 1.1 The Negative Impacts and Forecasts of Climate Change 1 1.1.1 Sea levels 1 1.1.2 Ocean currents 3 1.1.3 Coral reefs 4 1.1.4 Ocean acidity 4 1.1.5 Wildlife 5 1.1.6 Hurricanes 5 1.1.7 Floods 6 1.1.8 Fires 6 1.1.9 Forests 6 1.1.10 Droughts 7 1.1.11 Human health 8 1.1.12 Social cost 8 1.2 The Positive Global Trends to meet the Goals of the Paris Agreement 9 1.2.1 Coal 9 1.2.2 Wind 10 1.2.3 Solar 10 1.2.4 Employment 11 1.2.5 Industrial energy efficiency 11 1.3 International Protocols and Conventions 13 1.3.1 Paris agreement 13 1.3.2 Kyoto protocol 16 1.3.3 Bessel convention 16 1.3.4 Montreal protocol 17 1.3.5 Stockholm convention 17 1.4 Resources for this Chapter 17 Chapter 2 Fundamental Principles of Energy 25 2.1 Forms of Energy 25 2.1.1 Definition of energy 25 2.1.2 Different forms of energy and energy flow important to energy audits 26 2.2 Definition of Energy Efficiency 31 2.3 Definition of Energy Density 34 2.4 Units of Energy 35 2.4.1 Calorie 36 2.4.2 Joule 36 2.4.3 Pascal 37 2.4.4 Ampere 37 2.4.5 Ampere-hour 37 2.4.6 Volt-Ampere 37 2.4.7 kiloVolt-Ampere reactive 40 2.4.8 Watt 41 2.4.9 Watt-hour 41 2.4.10 kiloWatt and gigaWatt 42 Chapter 3 Energy Conversion and Efficiency 43 3.1 Energy Conversion, Electricity and Energy Efficiency 43 3.1.1 Total energy, useful and not useful energy 43 3.2 The Four Thermodynamic Laws 49 3.2.1 Definition and interpretation of thermodynamic law nr 0 49 3.2.2 Definition and interpretation of thermodynamic law nr 1 49 3.2.3 Definition and interpretation of thermodynamic law nr 2 50 3.2.4 Definition and interpretation of thermodynamic law nr 3 51 3.3 Energy Performance Criteria 52 3.4 Calculation of Energy Efficiency Performance 55 3.4.1 High level benchmarking metrics 56 3.4.2 Energy use index 56 3.4.3 Energy cost index 57 3.4.4 Productivity metrics 58 3.4.5 Energy efficiency rating, seasonal and integrated 58 3.4.6 System performance metrics 59 3.4.7 Typical system performance indexes 59 3.5 Calculation of Point of Use (PoU) costs 59 3.5.1 Energy conservation and energy conversion (energy flow) 60 3.5.2 Heat flow and heat loss 61 3.5.3 Mass- and energy-balance 61 3.5.4 Energy demand 64 Chapter 4 Fundamentals of Electrical Energy 69 4.1 Electrical Power and Electrical Power Quality 69 4.2 Electrical Voltage 70 4.3 Electrical Current 71 4.4 Electrical Power 72 4.5 Demand 72 4.6 Types of Current Flow 73 4.7 Direct Current 73 4.8 Batteries 74 4.9 Alternating Current 76 4.10 The Different Types of Loads 77 4.10.1 Electrical circuitry 77 4.10.2 Resistive loads 78 4.10.3 Inductive loads 79 4.10.4 Capacitive loads 80 4.11 Electrical Power Factor 81 4.11.1 Lower utility fees 87 4.11.2 Power factor penalty is eliminated 87 4.11.3 Increase voltage levels in the electric system and distribution system 87 4.11.4 Power factor correction in linear loads 88 4.11.5 Power factor correction in non-linear loads 89 4.11.6 Passive power factor correction (PFC) 89 4.11.7 Active power factor correction 90 4.11.8 Dynamic power factor correction 90 4.12 Demand Management 90 4.13 Load Factor 93 4.14 Load Shifting 94 4.14.1 Demand response 94 4.14.2 Dynamic demand 94 4.15 Load Shedding 95 4.16 Total Harmonic Distortion (THD) 95 4.16.1 THD voltage 98 4.16.2 Harmonic voltage distortions 98 4.16.3 Harmonic current distortion 99 4.17 Problems with Harmonics 100 4.18 Measuring Electrical Energy Consumption 101 4.18.1 Calculating power, energy and power factor in alternating current circuits 102 4.18.2 Calculate power, voltage, current and power factor in AC circuits 103 4.18.3 Voltage 106 4.18.4 Current 109 4.18.5 Power 110 4.19 Methods to Correct the Power Factor 113 4.20 Calculating Energy Efficiency for Electrical Equipment 114 4.21 Uninterruptible Power Supply 116 Chapter 5 Fundamentals of Thermal Energy 119 5.1 Types of Thermal Energy: Sensible and Latent 119 5.2 Concept of Useful Thermal Energy 121 5.3 Temperature 122 5.4 Pressure 122 5.5 Phase Changes 124 5.5.1 Evaporation 125 5.5.2 Condensation 125 5.5.3 Steam 125 5.5.4 Moist air and humidity 125 5.6 Psychrometric Charts 128 5.6.1 Air temperature 130 5.6.2 Relative humidity 131 5.6.3 Mean radiant temperature 131 5.6.4 Air flow movement 132 5.6.5 Infiltration loads in buildings 132 5.7 Calculating Thermal Energy 133 5.7.1 Heat loss calculations 134 5.8 Energy Efficiency Measures in Thermal Processes 136 Chapter 6 Energy Management Systems and Industrial Energy Audits 139 6.1 Energy Management Systems (EnMS) 139 6.1.1 Overview 139 6.1.2 Energy performance indicators 141 6.1.3 Calculation of energy efficiency performance 143 6.1.4 High level benchmarking metrics 145 6.2 Industrial Energy Audits 146 6.2.1 The types of energy audits 150 6.2.2 The energy audit process 150 Chapter 7 Instrumentation and Control 159 7.1 The Need for Automated Control 159 7.2 Control Components 160 7.2.1 Switches 161 7.2.2 Sensors 161 7.2.3 Transducers 163 7.2.4 Controllers 164 7.2.5 Control loops 165 7.2.6 Control devices 168 7.3 Control Modes 168 7.3.1 On/Off control 169 7.3.2 Floating control 169 7.3.3 Proportional only control (P) 170 7.3.4 Proportional-plus-integral control (PI) 170 7.3.5 Proportional-integral-derivative control (PID) 170 7.4 Sensor Types 170 7.4.1 Thermostats 171 7.4.2 Electric meter 171 7.4.3 Smoke sensors/detectors 171 7.4.4 Light sensors 171 7.4.5 Occupancy sensors 172 7.4.6 Carbon dioxide sensors 172 7.4.7 Carbon monoxide sensors 172 7.5 The Principles of Efficiency with Control and Control Applications 172 7.5.1 Efficiency through control 172 7.5.2 Efficiency through control applications 174 Chapter 8 Energy Investigation Support Tools 179 8.1 Measurement of Power 180 8.2 Measurement of Temperature 182 8.3 Measurement of Pressure 183 8.4 Measurement of Humidity 185 8.5 Measurement of Heat Capacity and Heat Storage 185 8.6 Combustion Measurement 187 8.7 Measurements of Air Velocity 187 8.8 Measurements of Flow 188 8.9 Measurements of Compressed Air Systems 190 8.9.1 Compressed air flow measurements 191 8.9.2 Leak detection in compressed air system 192 Chapter 9 Fuels, Furnaces, and Fired Equipment 195 9.1 Fuel Fired Systems 195 9.2 Fuels 196 9.2.1 Properties of solid fuels 196 9.2.2 Properties of liquid fuels (Oil) 198 9.2.1 Properties of gaseous fuels 199 9.3 Combustion 200 9.3.1 Combustion of carbon 200 9.3.2 Combustion air requirement 201 9.4 Optimizing Combustion Conditions 201 9.5 Fuel Fired Equipment and Applications 202 9.5.1 Furnaces 202 9.5.2 Dryers 203 9.5.3 Kilns 204 9.6 Flue Gas and Other Losses in Process Furnaces, Dryers and Kilns 204 9.7 Burners 204 9.7.1 Liquid fuel combustion 205 9.7.2 Pressure jet burners 205 9.7.3 Rotary cup burners 205 9.7.4 Air blast burners 206 9.7.5 Common problems in burners 206 9.8 Thermal Efficiencies 208 9.9 Air Pollution Control - Process and Equipment 209 9.9.1 Greenhouse gas effect 209 9.9.2 Acid rain 209 9.9.3 Ground level ozone 210 9.9.4 Reduction of pollutant emissions from combustion process 210 9.9.5 Energy efficiency improvements 210 9.9.6 Refinement to the combustion process 210 9.9.7 Flue gas treatment 211 9.9.8 Fuel switching 211 9.10 Energy Efficiency Measures 211 9.10.1 Maintain proper burner adjustment 211 9.10.2 Check excess air and combustibles in the flue gas 211 9.10.3 Keep heat exchange surfaces clean 211 9.10.4 Replace/Repair missing and damaged insulation 212 9.10.5 Check furnace pressure regularly 212 9.10.6 Schedule production to operate furnaces at or near maximum output 212 9.10.7 Replace damaged furnace doors or covers 212 9.10.8 Install adequate monitoring instrumentation 212 9.10.9 Recover heat from equipment cooling water 212 9.10.10 Install a heat exchanger in the flue gas outlet 213 Chapter 10 Heat Exchange Systems 215 10.1 Concepts of Conduction, Convection and Radiation 215 10.1.1 Conduction 215 10.1.2 Convection 217 10.1.3 Thermal radiation 218 10.2 Specific Heat Capacity 221 10.3 Insulation 222 10.3.1 Heat loss through a wall 225 10.3.2 Heat loss from a pipe 225 10.3.3 Heat loss from an industrial freezer 226 10.3.4 Insulating materials 228 10.3.5 Protective coverings and finishes 231 10.3.6 Accessories 233 10.3.7 Insulation energy efficiency measures 234 10.3.8 Vapor loss from open processing tanks 234 10.4 Heat Recovery with Heat Exchangers 236 10.4.1 Shell and tube 237 10.4.2 Plate and frame 238 10.4.3 Heat wheel 238 10.4.4 Heat pipes 238 10.4.5 Run around system 239 10.4.6 Plate or Baffle type heat exchanger 240 10.4.7 Heat pumps 241 10.4.8 Waste heat boilers 242 10.4.9 Recuperators 242 10.4.10 Heat recovery ventilation systems 243 10.4.11 Mechanical and natural ventilation 245 Chapter 11 Steam Systems 247 11.1 Generation 248 11.1.1 Steam 248 11.1.2 Sensible heat and latent heat 249 11.1.3 Steam quality 252 11.1.4 Superheated steam 252 11.1.5 Example of the effects of increasing surface area 253 11.1.6 Boiler types 253 11.1.7 Combustion losses 255 11.1.8 Blowdown losses 255 11.1.9 Feedwater treatment 259 11.1.10 Condensate tanks 259 11.1.11 Flash tanks 260 11.1.12 Flash steam heat recovery 260 11.2 Distribution 261 11.2.1 Condensate return 264 11.2.2 Steam leaks 267 11.2.3 Insulation 268 11.2.4 Steam pressure 271 11.2.5 Steam pipes 273 11.2.6 Heat transfer from steam 280 11.2.7 Steam traps 280 11.2.8 Routine maintenance of traps 288 11.3 End-Use 289 11.4 Energy Efficiency Measures 290 11.4.1 Boiler house ⁰́₃ Operation opportunities 290 11.4.2 Boiler house ⁰́₃ Maintenance opportunities 290 11.4.3 Boiler house ⁰́₃ Retrofit opportunities 291 11.4.4 Steam distribution system opportunities 291 11.4.5 End-use equipment opportunities 292 Chapter 12 Motors and Drives 301 12.1 Electric Motor Types 301 12.1.1 Direct-Current motors (DC) 301 12.1.2 Synchronous motors 30 ... Industrial Energy Systems Handbook is a supplementary reading resource for candidates undertaking the Association of Energy Engineers (AEE) Certified Industrial Energy Professional (CIEP) program. Understanding how the various industrial systems work is key to identifying savings opportunities. An overview is given of the global energy situation as at the time of publication which cements the necessity to improve energy intensive processes to become more optimized. Comprehension of opportunities to optimize an industrial energy system starts with the fundamentals of energy, electrical energy and thermal energy, and the importance of energy management systems and industrial energy audits. The main energy consuming systems in industry are covered such as steam, compressed air, motors, drives, fans, pumps, lighting, furnaces, heat exchange systems, and large scale cooling and industrial refrigeration. The instrumentation and control as well as toolkits available rounds off the handbook topics Power resources Engineering Ressources énergétiques Ingénierie energy resources engineering TECHNOLOGY / Power Resources TECHNOLOGY / Electricity BUSINESS & ECONOMICS / Facility Management Erscheint auch als Druck-Ausgabe 9788770226608 https://ieeexplore.ieee.org/book/9875231 Aggregator URL des Erstveröffentlichers Volltext https://www.taylorfrancis.com/books/9781003356431 Taylor & Francis |
spellingShingle | Williams, Albert Industrial energy systems handbook List of Contributors xxi List of Figures xxiii List of Tables xxxi Chapter 1 Global Energy Situation on Climate Change 1 1.1 The Negative Impacts and Forecasts of Climate Change 1 1.1.1 Sea levels 1 1.1.2 Ocean currents 3 1.1.3 Coral reefs 4 1.1.4 Ocean acidity 4 1.1.5 Wildlife 5 1.1.6 Hurricanes 5 1.1.7 Floods 6 1.1.8 Fires 6 1.1.9 Forests 6 1.1.10 Droughts 7 1.1.11 Human health 8 1.1.12 Social cost 8 1.2 The Positive Global Trends to meet the Goals of the Paris Agreement 9 1.2.1 Coal 9 1.2.2 Wind 10 1.2.3 Solar 10 1.2.4 Employment 11 1.2.5 Industrial energy efficiency 11 1.3 International Protocols and Conventions 13 1.3.1 Paris agreement 13 1.3.2 Kyoto protocol 16 1.3.3 Bessel convention 16 1.3.4 Montreal protocol 17 1.3.5 Stockholm convention 17 1.4 Resources for this Chapter 17 Chapter 2 Fundamental Principles of Energy 25 2.1 Forms of Energy 25 2.1.1 Definition of energy 25 2.1.2 Different forms of energy and energy flow important to energy audits 26 2.2 Definition of Energy Efficiency 31 2.3 Definition of Energy Density 34 2.4 Units of Energy 35 2.4.1 Calorie 36 2.4.2 Joule 36 2.4.3 Pascal 37 2.4.4 Ampere 37 2.4.5 Ampere-hour 37 2.4.6 Volt-Ampere 37 2.4.7 kiloVolt-Ampere reactive 40 2.4.8 Watt 41 2.4.9 Watt-hour 41 2.4.10 kiloWatt and gigaWatt 42 Chapter 3 Energy Conversion and Efficiency 43 3.1 Energy Conversion, Electricity and Energy Efficiency 43 3.1.1 Total energy, useful and not useful energy 43 3.2 The Four Thermodynamic Laws 49 3.2.1 Definition and interpretation of thermodynamic law nr 0 49 3.2.2 Definition and interpretation of thermodynamic law nr 1 49 3.2.3 Definition and interpretation of thermodynamic law nr 2 50 3.2.4 Definition and interpretation of thermodynamic law nr 3 51 3.3 Energy Performance Criteria 52 3.4 Calculation of Energy Efficiency Performance 55 3.4.1 High level benchmarking metrics 56 3.4.2 Energy use index 56 3.4.3 Energy cost index 57 3.4.4 Productivity metrics 58 3.4.5 Energy efficiency rating, seasonal and integrated 58 3.4.6 System performance metrics 59 3.4.7 Typical system performance indexes 59 3.5 Calculation of Point of Use (PoU) costs 59 3.5.1 Energy conservation and energy conversion (energy flow) 60 3.5.2 Heat flow and heat loss 61 3.5.3 Mass- and energy-balance 61 3.5.4 Energy demand 64 Chapter 4 Fundamentals of Electrical Energy 69 4.1 Electrical Power and Electrical Power Quality 69 4.2 Electrical Voltage 70 4.3 Electrical Current 71 4.4 Electrical Power 72 4.5 Demand 72 4.6 Types of Current Flow 73 4.7 Direct Current 73 4.8 Batteries 74 4.9 Alternating Current 76 4.10 The Different Types of Loads 77 4.10.1 Electrical circuitry 77 4.10.2 Resistive loads 78 4.10.3 Inductive loads 79 4.10.4 Capacitive loads 80 4.11 Electrical Power Factor 81 4.11.1 Lower utility fees 87 4.11.2 Power factor penalty is eliminated 87 4.11.3 Increase voltage levels in the electric system and distribution system 87 4.11.4 Power factor correction in linear loads 88 4.11.5 Power factor correction in non-linear loads 89 4.11.6 Passive power factor correction (PFC) 89 4.11.7 Active power factor correction 90 4.11.8 Dynamic power factor correction 90 4.12 Demand Management 90 4.13 Load Factor 93 4.14 Load Shifting 94 4.14.1 Demand response 94 4.14.2 Dynamic demand 94 4.15 Load Shedding 95 4.16 Total Harmonic Distortion (THD) 95 4.16.1 THD voltage 98 4.16.2 Harmonic voltage distortions 98 4.16.3 Harmonic current distortion 99 4.17 Problems with Harmonics 100 4.18 Measuring Electrical Energy Consumption 101 4.18.1 Calculating power, energy and power factor in alternating current circuits 102 4.18.2 Calculate power, voltage, current and power factor in AC circuits 103 4.18.3 Voltage 106 4.18.4 Current 109 4.18.5 Power 110 4.19 Methods to Correct the Power Factor 113 4.20 Calculating Energy Efficiency for Electrical Equipment 114 4.21 Uninterruptible Power Supply 116 Chapter 5 Fundamentals of Thermal Energy 119 5.1 Types of Thermal Energy: Sensible and Latent 119 5.2 Concept of Useful Thermal Energy 121 5.3 Temperature 122 5.4 Pressure 122 5.5 Phase Changes 124 5.5.1 Evaporation 125 5.5.2 Condensation 125 5.5.3 Steam 125 5.5.4 Moist air and humidity 125 5.6 Psychrometric Charts 128 5.6.1 Air temperature 130 5.6.2 Relative humidity 131 5.6.3 Mean radiant temperature 131 5.6.4 Air flow movement 132 5.6.5 Infiltration loads in buildings 132 5.7 Calculating Thermal Energy 133 5.7.1 Heat loss calculations 134 5.8 Energy Efficiency Measures in Thermal Processes 136 Chapter 6 Energy Management Systems and Industrial Energy Audits 139 6.1 Energy Management Systems (EnMS) 139 6.1.1 Overview 139 6.1.2 Energy performance indicators 141 6.1.3 Calculation of energy efficiency performance 143 6.1.4 High level benchmarking metrics 145 6.2 Industrial Energy Audits 146 6.2.1 The types of energy audits 150 6.2.2 The energy audit process 150 Chapter 7 Instrumentation and Control 159 7.1 The Need for Automated Control 159 7.2 Control Components 160 7.2.1 Switches 161 7.2.2 Sensors 161 7.2.3 Transducers 163 7.2.4 Controllers 164 7.2.5 Control loops 165 7.2.6 Control devices 168 7.3 Control Modes 168 7.3.1 On/Off control 169 7.3.2 Floating control 169 7.3.3 Proportional only control (P) 170 7.3.4 Proportional-plus-integral control (PI) 170 7.3.5 Proportional-integral-derivative control (PID) 170 7.4 Sensor Types 170 7.4.1 Thermostats 171 7.4.2 Electric meter 171 7.4.3 Smoke sensors/detectors 171 7.4.4 Light sensors 171 7.4.5 Occupancy sensors 172 7.4.6 Carbon dioxide sensors 172 7.4.7 Carbon monoxide sensors 172 7.5 The Principles of Efficiency with Control and Control Applications 172 7.5.1 Efficiency through control 172 7.5.2 Efficiency through control applications 174 Chapter 8 Energy Investigation Support Tools 179 8.1 Measurement of Power 180 8.2 Measurement of Temperature 182 8.3 Measurement of Pressure 183 8.4 Measurement of Humidity 185 8.5 Measurement of Heat Capacity and Heat Storage 185 8.6 Combustion Measurement 187 8.7 Measurements of Air Velocity 187 8.8 Measurements of Flow 188 8.9 Measurements of Compressed Air Systems 190 8.9.1 Compressed air flow measurements 191 8.9.2 Leak detection in compressed air system 192 Chapter 9 Fuels, Furnaces, and Fired Equipment 195 9.1 Fuel Fired Systems 195 9.2 Fuels 196 9.2.1 Properties of solid fuels 196 9.2.2 Properties of liquid fuels (Oil) 198 9.2.1 Properties of gaseous fuels 199 9.3 Combustion 200 9.3.1 Combustion of carbon 200 9.3.2 Combustion air requirement 201 9.4 Optimizing Combustion Conditions 201 9.5 Fuel Fired Equipment and Applications 202 9.5.1 Furnaces 202 9.5.2 Dryers 203 9.5.3 Kilns 204 9.6 Flue Gas and Other Losses in Process Furnaces, Dryers and Kilns 204 9.7 Burners 204 9.7.1 Liquid fuel combustion 205 9.7.2 Pressure jet burners 205 9.7.3 Rotary cup burners 205 9.7.4 Air blast burners 206 9.7.5 Common problems in burners 206 9.8 Thermal Efficiencies 208 9.9 Air Pollution Control - Process and Equipment 209 9.9.1 Greenhouse gas effect 209 9.9.2 Acid rain 209 9.9.3 Ground level ozone 210 9.9.4 Reduction of pollutant emissions from combustion process 210 9.9.5 Energy efficiency improvements 210 9.9.6 Refinement to the combustion process 210 9.9.7 Flue gas treatment 211 9.9.8 Fuel switching 211 9.10 Energy Efficiency Measures 211 9.10.1 Maintain proper burner adjustment 211 9.10.2 Check excess air and combustibles in the flue gas 211 9.10.3 Keep heat exchange surfaces clean 211 9.10.4 Replace/Repair missing and damaged insulation 212 9.10.5 Check furnace pressure regularly 212 9.10.6 Schedule production to operate furnaces at or near maximum output 212 9.10.7 Replace damaged furnace doors or covers 212 9.10.8 Install adequate monitoring instrumentation 212 9.10.9 Recover heat from equipment cooling water 212 9.10.10 Install a heat exchanger in the flue gas outlet 213 Chapter 10 Heat Exchange Systems 215 10.1 Concepts of Conduction, Convection and Radiation 215 10.1.1 Conduction 215 10.1.2 Convection 217 10.1.3 Thermal radiation 218 10.2 Specific Heat Capacity 221 10.3 Insulation 222 10.3.1 Heat loss through a wall 225 10.3.2 Heat loss from a pipe 225 10.3.3 Heat loss from an industrial freezer 226 10.3.4 Insulating materials 228 10.3.5 Protective coverings and finishes 231 10.3.6 Accessories 233 10.3.7 Insulation energy efficiency measures 234 10.3.8 Vapor loss from open processing tanks 234 10.4 Heat Recovery with Heat Exchangers 236 10.4.1 Shell and tube 237 10.4.2 Plate and frame 238 10.4.3 Heat wheel 238 10.4.4 Heat pipes 238 10.4.5 Run around system 239 10.4.6 Plate or Baffle type heat exchanger 240 10.4.7 Heat pumps 241 10.4.8 Waste heat boilers 242 10.4.9 Recuperators 242 10.4.10 Heat recovery ventilation systems 243 10.4.11 Mechanical and natural ventilation 245 Chapter 11 Steam Systems 247 11.1 Generation 248 11.1.1 Steam 248 11.1.2 Sensible heat and latent heat 249 11.1.3 Steam quality 252 11.1.4 Superheated steam 252 11.1.5 Example of the effects of increasing surface area 253 11.1.6 Boiler types 253 11.1.7 Combustion losses 255 11.1.8 Blowdown losses 255 11.1.9 Feedwater treatment 259 11.1.10 Condensate tanks 259 11.1.11 Flash tanks 260 11.1.12 Flash steam heat recovery 260 11.2 Distribution 261 11.2.1 Condensate return 264 11.2.2 Steam leaks 267 11.2.3 Insulation 268 11.2.4 Steam pressure 271 11.2.5 Steam pipes 273 11.2.6 Heat transfer from steam 280 11.2.7 Steam traps 280 11.2.8 Routine maintenance of traps 288 11.3 End-Use 289 11.4 Energy Efficiency Measures 290 11.4.1 Boiler house ⁰́₃ Operation opportunities 290 11.4.2 Boiler house ⁰́₃ Maintenance opportunities 290 11.4.3 Boiler house ⁰́₃ Retrofit opportunities 291 11.4.4 Steam distribution system opportunities 291 11.4.5 End-use equipment opportunities 292 Chapter 12 Motors and Drives 301 12.1 Electric Motor Types 301 12.1.1 Direct-Current motors (DC) 301 12.1.2 Synchronous motors 30 ... |
title | Industrial energy systems handbook |
title_auth | Industrial energy systems handbook |
title_exact_search | Industrial energy systems handbook |
title_exact_search_txtP | Industrial energy systems handbook |
title_full | Industrial energy systems handbook Albert Williams |
title_fullStr | Industrial energy systems handbook Albert Williams |
title_full_unstemmed | Industrial energy systems handbook Albert Williams |
title_short | Industrial energy systems handbook |
title_sort | industrial energy systems handbook |
url | https://ieeexplore.ieee.org/book/9875231 https://www.taylorfrancis.com/books/9781003356431 |
work_keys_str_mv | AT williamsalbert industrialenergysystemshandbook |