Catalysis in confined frameworks: synthesis, characterization, and applications
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
[2024]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben und Index |
Beschreibung: | xiv, 482 Seiten Illustrationen, Diagramme |
ISBN: | 9783527350896 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049482788 | ||
003 | DE-604 | ||
005 | 20240613 | ||
007 | t | ||
008 | 240102s2024 gw a||| |||| 00||| eng d | ||
015 | |a 23,N19 |2 dnb | ||
016 | 7 | |a 1288412630 |2 DE-101 | |
020 | |a 9783527350896 |c hbk. |9 978-3-527-35089-6 | ||
024 | 3 | |a 9783527350896 | |
035 | |a (OCoLC)1418689792 | ||
035 | |a (DE-599)DNB1288412630 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-91G |a DE-11 |a DE-19 | ||
084 | |a VK 5570 |0 (DE-625)147405:253 |2 rvk | ||
084 | |a VE 7040 |0 (DE-625)147136:253 |2 rvk | ||
084 | |a VH 9600 |0 (DE-625)147383:253 |2 rvk | ||
084 | |8 1\p |a 540 |2 23sdnb | ||
084 | |a CHE 167 |2 stub | ||
245 | 1 | 0 | |a Catalysis in confined frameworks |b synthesis, characterization, and applications |c edited by Hermenegildo Garcia and Amarajothi Dhakshinamoorthy |
264 | 1 | |a Weinheim |b Wiley-VCH |c [2024] | |
264 | 4 | |c © 2024 | |
300 | |a xiv, 482 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturangaben und Index | ||
650 | 0 | 7 | |a Katalyse |0 (DE-588)4029921-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Metallorganisches Netzwerk |0 (DE-588)7755315-9 |2 gnd |9 rswk-swf |
653 | |a Catalysis | ||
653 | |a Chemie | ||
653 | |a Chemistry | ||
653 | |a Industrial Chemistry | ||
653 | |a Katalyse | ||
653 | |a Materials Science | ||
653 | |a Materialwissenschaften | ||
653 | |a Poröse Materialien | ||
653 | |a Porous Materials | ||
653 | |a Technische u. Industrielle Chemie | ||
653 | |a CH30: Technische u. Industrielle Chemie | ||
653 | |a CH40: Katalyse | ||
653 | |a MSK0: Poröse Materialien | ||
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Katalyse |0 (DE-588)4029921-1 |D s |
689 | 0 | 1 | |a Metallorganisches Netzwerk |0 (DE-588)7755315-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a García, Hermenegildo |d 1957- |0 (DE-588)1156876729 |4 edt | |
700 | 1 | |a Dhakshinamoorthy, Amarajothi |0 (DE-588)1317680235 |4 edt | |
710 | 2 | |a Wiley-VCH |0 (DE-588)16179388-5 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-527-83925-4 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-527-83926-1 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-527-83927-8 |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034828218&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a vlb |d 20230506 |q DE-101 |u https://d-nb.info/provenance/plan#vlb |
Datensatz im Suchindex
_version_ | 1805076878366605312 |
---|---|
adam_text |
CONTENTS
PREFACE
XIII
1
ENGINEERING
OF
METAL
ACTIVE
SITES
IN
MOFS
1
CARMEN
FERNANDEZ-CONDE,
MARIA
ROMERO-ANGEL,
ANA
RUBIO-GASPAR,
AND
CARLOS
MARTI-GASTALDO
1.1
1.1.1
1.1.1.1
1.1.1.2
1.1.2
METAL
NODE
ENGINEERING
2
FRAMEWORKS
WITH
INTRINSICALLY
ACTIVE
METAL
NODES
3
METAL-ORGANIC
FRAMEWORKS
WITH
ONLY
ONE
METAL
3
METAL-ORGANIC
FRAMEWORKS
WITH
MORE
THAN
ONE
METAL
IN
ITS
CLUSTER
6
INTRODUCING
DEFECTIVITY
AS
A
POWERFUL
TOOL
TO
TUNE
METAL-NODE
CATALYTIC
PROPERTIES
IN
MOFS
8
1.1.3
INCORPORATING
METALS
TO
ALREADY-SYNTHETIZED
METAL-ORGANIC
FRAMEWORKS:
ISOLATING
THE
CATALYTIC
SITE
12
1.1.4
1.1.5
1.1.6
1.2
1.2.1
1.2.1.1
1.2.1.2
1.2.1.3
1.2.2
1.2.2.1
1.2.2.2
1.2.2.3
1.2.3
1.2.3.1
METAL
EXCHANGE
14
ATTACHING
METALLIC
UNITS
TO
THE
MOF
14
GRAFTING
OF
ORGANOMETALLIC
COMPLEXES
INTO
THE
MOF
NODES
18
LIGAND
ENGINEERING
21
LIGANDS AS
ACTIVE
METAL
SITES
22
CREATING
METAL
SITES
IN
THE
ORGANIC
LINKERS.
TYPES
OF
LIGANDS
22
COOPERATION
BETWEEN
SINGLE-METAL
SITES
AND
METALLOLIGANDS
28
LIGAND
ACCELERATED
CATALYSIS
(LAC)
28
INTRODUCTION
OF
METALS
BY
DIRECT
SYNTHESIS
31
IN-SITU
METALATION
32
PREMETALATED
LINKER
32
POSTGRAFTING
METAL
COMPLEXES
33
INTRODUCTION
OF
METALS
BY
POST-SYNTHETIC
MODIFICATIONS
34
POST-SYNTHETIC
EXCHANGE
OR
SOLVENT-ASSISTED
LINKER
EXCHANGE
(SALE)
34
1.2.3.2
1.3
1.3.1
POST-SYNTHETIC
METALATION
36
METAL-BASED
GUEST
PORE
ENGINEERING
38
ENCAPSULATION
METHODOLOGIES
IN
AS-MADE
METAL-ORGANIC
FRAMEWORKS
39
1.3.1.1
INCIPIENT
WETNESS
IMPREGNATION
39
VI
CONTENTS
1.3.1.2
1.3.1.3
1.3.1.4
1.3.2
1.3.2.1
1.3.2.2
SHIP-IN-A-BOTTLE
42
METAL-ORGANIC
CHEMICAL
VAPOR
DEPOSITION
(MOCVD)
42
METAL-ION
EXCHANGE
46
IN
SITU
GUEST
METAL-ORGANIC
FRAMEWORK
ENCAPSULATIONS
47
SOLVOTHERMAL
ENCAPSULATION
OR
ONE
POT
47
CO-PRECIPITATION
METHODOLOGIES
49
LIST
OF
ABBREVIATIONS
52
REFERENCES
53
2
ENGINEERING
THE
POROSITY
AND
ACTIVE
SITES
IN
METAL-ORGANIC
FRAMEWORK
67
ASHISH
K.
KAR,
GANESH
S.
MORE,
AND
RAJENDRA
SRIVASTAVA
2.1
2.2
2.2.1
2.2.2
2.2.3
2.3
2.4
INTRODUCTION
67
ACTIVE
SITES
IN
MOF
69
ACTIVE
SITES
NEAR
PORES
IN
MOF
69
ACTIVE
SITES
NEAR
METALLIC
NODES
IN
MOF
70
ACTIVE
SITES
NEAR
LIGAND
CENTER
IN
MOF
70
SYNTHESIS
AND
CHARACTERIZATION
70
ENGINEERING
OF
ACTIVE
SITES
IN
MOF
STRUCTURE
FOR
CATALYTIC
TRANSFORMATIONS
72
2.4.1
2.4.2
2.4.3
2.5
PORE
TUNABILITY
73
METAL
NODES
77
LIGAND
CENTERS
83
CONCLUSION
90
REFERENCES
91
3
CHARACTERIZATION
OF
ORGANIC
LINKER-CONTAINING
POROUS
MATERIALS
AS
NEW
EMERGING
HETEROGENEOUS
CATALYSTS
97
ALI
R.
OVEISI,
SABA
DALIRAN,
AND
YONG
PENG
3.1
3.2
3.2.1
3.2.2
3.2.3
3.3
3.3.1
3.3.1.1
3.3.1.2
3.3.1.3
3.3.2
3.3.3
3.3.4
3.3.5
3.4
3.4.1
3.4.2
INTRODUCTION
97
MICROSCOPY
TECHNIQUES
98
SCANNING
ELECTRON
MICROSCOPY
(SEM)
98
TRANSMISSION
ELECTRON
MICROSCOPY
(TEM)
100
ATOMIC
FORCE
MICROSCOPY
(AFM)
103
SPECTROSCOPY
TECHNIQUES
104
X-RAY
SPECTROSCOPY
104
X-RAY
DIFFRACTION
(XRD)
104
X-RAY
PHOTOELECTRON
SPECTROSCOPY
(XPS)
105
X-RAY
ABSORPTION
FINE
STRUCTURE
(XAFS)
TECHNIQUES
107
NUCLEAR
MAGNETIC
RESONANCE
(NMR)
109
ELECTRON
PARAMAGNETIC
RESONANCE
(EPR)
110
ULTRAVIOLET-VISIBLE
DIFFUSE
REFLECTANCE
SPECTROSCOPY
(UV-VIS
DRS)
111
INDUCTIVELY
COUPLED
PLASMA
(ICP)
ANALYSIS
112
OTHER
TECHNIQUES
114
THERMOGRAVIMETRIC
ANALYSIS
(TGA)
114
N
2
ADSORPTION
115
CONTENTS
VII
3.4.3
DENSITY
FUNCTIONAL
THEORY
(DFT)
CALCULATIONS
118
3.5
CONCLUSIONS
121
ACKNOWLEDGMENTS
121
REFERENCES
121
4
MIXED
LINKER
MOFS
IN
CATALYSIS
127
MOHAMMAD
Y.
MASOOMI
AND
LIDA
HASHEMI
4.1
INTRODUCTION
127
4.1.1
INTRODUCTION
TO
MIXED
LINKER
MOFS
127
4.2
STRATEGIES
FOR
SYNTHESIZING
MIXED-LINKER
MOFS
128
4.2.1
IML
FRAMEWORKS
128
4.2.2
HML
FRAMEWORKS
129
4.2.3
TML
FRAMEWORKS
130
4.3
TYPES
OF
MIXED-LINKER
MOFS
131
4.3.1
PILLARED-LAYER
MIXED-LINKER
MOFS
131
4.3.2
CAGE-DIRECTED
MIXED-LINKER
MOFS
132
4.3.3
CLUSTER-BASED
MIXED-LINKER
MOFS
132
4.3.4
STRUCTURE
TEMPLATED
MIXED-LINKER
MOFS
132
4.4
INTRODUCTION
TO
CATALYSIS
WITH
MOFS
133
4.5
MIXED-LINKER
MOFS
AS
HETEROGENEOUS
CATALYSTS
133
4.5.1
MIXED-LINKER
MOFS
WITH
SIMILAR
SIZE/DIRECTIONALITY
LINKERS
134
4.5.2
MIXED-LINKER
MOFS
WITH
STRUCTURALLY
INDEPENDENT
LINKERS
140
4.6
CONCLUSION
148
REFERENCES
148
5
ACID-CATALYZED
DIASTEREOSELECTIVE
REACTIONS
INSIDE
MOF
PORES
151
HERME
G.
BALDOVI,
SERGIO
NAVALON,
AND
FRANCESC
X.
LLABRES
I
XAMENA
5.1
INTRODUCTION
151
5.2
DIASTEREOSELECTIVE
REACTIONS
CATALYZED
BY
MOFS
154
5.2.1
MEERWEIN-PONNDORF
-
VERLEY
REDUCTION
OF
CARBONYL
COMPOUNDS
154
5.2.2
ALDOL
ADDITION
REACTIONS
158
5.2.3
DIELS-ALDER
REACTION
162
5.2.4
ISOMERIZATION
REACTIONS
164
5.2.5
CYCLOPROPANATION
168
5.3
CONCLUSIONS
AND
OUTLOOK
176
ACKNOWLEDGMENTS
176
REFERENCES
176
6
CHIRAL
MOFS
FOR
ASYMMETRIC
CATALYSIS
181
KAYHANEH
BERIJANI
AND
ALI
MORSALI
6.1
CHIRAL
METAL-ORGANIC
FRAMEWORKS
(CMOFS)
181
6.2
SYNTHESIS
METHODS
OF
CMOFS
WITH
ACHIRAL
AND
CHIRAL
BUILDING
BLOCKS
184
6.2.1
SPONTANEOUS
RESOLUTION
185
VIII
CONTENTS
6.2.2
6.2.3
6.3
6.3.1
6.3.2
6.4
DIRECT
SYNTHESIS
187
INDIRECT
SYNTHESIS
190
CHIRAL
MOF
CATALYSTS
192
BRIEF
HISTORY
OF
CMOF-BASED
CATALYSTS
192
DESIGNING
CMOF
CATALYSTS
193
EXAMPLES
OF
ENANTIOSELECTIVE
CATALYSIS
USING
CMOF-BASED
CATALYSTS
194
6.4.1
6.4.2
6.5
TYPE
I:
CHIRAL
MOFS
IN
SIMPLE
ASYMMETRIC
REACTIONS
194
TYPE
II:
CHIRAL
MOFS
IN
COMPLEX
ASYMMETRIC
REACTIONS
206
CONCLUSION
210
REFERENCES
210
7
MOF-SUPPORTED
METAL
NANOPARTICLES
FOR
CATALYTIC
APPLICATIONS
219
DANYU
GUO,
LIYU
CHEN,
AND
YINGWEI
LI
7.1
7.2
7.2.1
7.2.2
7.2.3
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.4.1
7.3.4.2
7.3.4.3
7.3.5
7.3.6
7.4
7.4.1
7.4.2
7.4.2.1
7.4.2.2
7.4.2.3
7.4.3
7.4.3.1
7.4.3.2
7.4.3.3
7.4.4
7.4.4.1
7.4.4.2
INTRODUCTION
219
SYNERGISTIC
CATALYSIS
BY
MNP@MOF
COMPOSITES
220
THE
INORGANIC
NODES
OF
MOFS
COOPERATING
WITH
METAL
NPS
220
THE
ORGANIC
LINKERS
OF
MOFS
COOPERATING
WITH
METAL
NPS
220
THE
NANOSTRUCTURES
OF
MOFS
COOPERATING
WITH
METAL
NPS
221
ELECTROCATALYSIS
APPLICATIONS
221
HYDROGEN
EVOLUTION
REACTION
221
OXYGEN
EVOLUTION
REACTION
223
OXYGEN
REDUCTION
REACTION
224
CO2
REDUCTION
REACTION
224
CO
225
HCOOH
225
C
H4
225
NITROGEN
REDUCTION
REACTION
227
OXIDATION
OF
SMALL
MOLECULES
228
PHOTOCATALYTIC
APPLICATIONS
229
PHOTOCATALYTIC
HYDROGEN
PRODUCTION
229
PHOTOCATALYTIC
CO
2
REDUCTION
232
CO
2
PHOTOREDUCTION
TO
CO
232
CO
2
PHOTOREDUCTION
TO
CH,OH
233
CO
2
PHOTOREDUCTION
TO
HCOO-/HCOOH
234
PHOTOCATALYTIC
ORGANIC
REACTIONS
235
PHOTOCATALYTIC
HYDROGENATION
REACTIONS
235
PHOTOCATALYTIC
OXIDATION
REACTIONS
235
PHOTOCATALYTIC
COUPLING
REACTION
236
PHOTOCATALYTIC
DEGRADATION
OF
ORGANIC
POLLUTANTS
237
DEGRADATION
OF
POLLUTANTS
IN
WASTEWATER
237
DEGRADATION
OF
GAS-PHASE
ORGANIC
COMPOUNDS
239
CONTENTS
IX
7.5
7.5.1
7.5.1.1
7.5.1.2
7.5.2
7.5.2.1
7.5.2.2
7.5.2.3
7.5.3
7.5.3.1
7.5.3.2
7.5.3.3
7.5.3.4
7.5.3.5
7.5.4
7.5.5
7.6
THERMOCATALYTIC
APPLICATIONS
239
OXIDATION
REACTIONS
239
GAS-PHASE
OXIDATION
REACTIONS
239
LIQUID-PHASE
OXIDATION
REACTIONS
240
HYDROGENATION
REACTIONS
241
HYDROGENATION
OF
C=C
AND
C=C
GROUPS
241
THE
REDUCTION
OF
-
NO
2
GROUP
242
THE
REDUCTION
OF
C=0
GROUPS
244
COUPLING
REACTIONS
244
SUZUKI-MIYAURA
COUPLING
REACTIONS
244
HECK
COUPLING
REACTIONS
246
GLASER
COUPLING
REACTIONS
246
KNOEVENAGEL
CONDENSATION
REACTION
246
THREE-COMPONENT
COUPLING
REACTION
247
CO
2
CYCLOADDITION
REACTIONS
247
TANDEM
REACTIONS
248
CONCLUSIONS
AND
OUTLOOKS
250
REFERENCES
251
8
CONFINEMENT
EFFECTS
IN
CATALYSIS
WITH
MOLECULAR
COMPLEXES
IMMOBILIZED
INTO
POROUS
MATERIALS
273
MARYSE
GOUYGOU,
PHILIPPE
SERP,
AND
JEROME
DURAND
8.1
8.2
8.2.1
8.2.2
8.2.3
INTRODUCTION
273
IMMOBILIZATION
OF
MOLECULAR
COMPLEXES
INTO
POROUS
MATERIALS
279
CONFINEMENT
OF
MOLECULAR
COMPLEXES
IN
MESOPOROUS
SILICA
279
CONFINEMENT
OF
MOLECULAR
COMPLEXES
IN
ZEOLITES
281
CONFINEMENT
OF
MOLECULAR
COMPLEXES
IN
COVALENT
ORGANIC
FRAMEWORKS
(COF)
282
8.2.4
CONFINEMENT
OF
MOLECULAR
COMPLEXES
IN
METAL-ORGANIC
FRAMEWORKS
(MOFS)
283
8.2.5
8.3
CONFINEMENT
OF
MOLECULAR
COMPLEXES
IN
CARBON
MATERIALS
285
CHARACTERIZATION
OF
MOLECULAR
COMPLEXES
IMMOBILIZED
INTO
POROUS
MATERIALS
285
8.4
CATALYSIS
WITH
MOLECULAR
COMPLEXES
IMMOBILIZED
INTO
POROUS
MATERIALS
AND
EVIDENCES
OF
CONFINEMENT
EFFECTS
287
8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
8.4.6.1
8.4.6.2
HYDROGENATION
REACTIONS
288
HYDROFORMYLATION
REACTIONS
289
OXIDATION
REACTIONS
290
ETHYLENE
OLIGOMERIZATION
AND
POLYMERIZATION
REACTIONS
291
METATHESIS
REACTIONS
291
MISCELLANEOUS
REACTIONS
ON
VARIOUS
SUPPORTS
293
ZEOLITES
293
MESOPOROUS
SILICA
293
CONTENTS
8.4.6.3
8.4.7
8.5
MOFS
294
ASYMMETRIC
CATALYSIS
REACTIONS
295
CONCLUSION
298
REFERENCES
299
9
SIZE-SELECTIVE
CATALYSIS
BY
METAL-ORGANIC
FRAMEWORKS
315
AMARAJOTHI
DHAKSHINAMOORTHY
AND
HERMENEGILDO
GARCIA
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
INTRODUCTION
315
FRIEDEL-CRAFTS
ALKYLATION
319
CYCLOADDITION
REACTIONS
320
OXIDATION
OF
OLEFINS
323
HYDROGENATION
REACTIONS
325
ALDEHYDE
CYANOSILYLATION
326
KNOEVENAGEL
CONDENSATION
328
CONCLUSIONS
329
REFERENCES
330
10
SELECTIVE
OXIDATIONS
IN
CONFINED
ENVIRONMENT
333
OXANA
A.
KHOLDEEVA
10.1
10.2
10.2.1
10.2.2
10.3
10.3.1
10.3.2
10.3.3
10.4
10.4.1
10.4.2
10.5
10.5.1
10.5.2
10.5.3
10.6
INTRODUCTION
333
TRANSITION-METAL-SUBSTITUTED
MOLECULAR
SIEVES
334
TI-SUBSTITUTED
ZEOLITES
AND
H
2
O
2
334
CO-SUBSTITUTED
ALUMINOPHOSPHATES
AND
O
2
337
MESOPOROUS
METAL-SILICATES
338
MESOPOROUS
TI-SILICATES
IN
OXIDATION
OF
HYDROCARBONS
339
MESOPOROUS
TI-SILICATES
IN
OXIDATION
OF
BULKY
PHENOLS
340
ALKENE
EPOXIDATION
OVER
MESOPOROUS
NB-SILICATES
342
METAL-ORGANIC
FRAMEWORKS
343
SELECTIVE
OXIDATIONS
OVER
CR
AND
FE-BASED
MOFS
343
SELECTIVE
OXIDATIONS
WITH
H
2
O
2
OVER
ZR
AND
TI-BASED
MOFS
347
POLYOXOMETALATES
IN
CONFINED
ENVIRONMENT
349
SILICA-ENCAPSULATED
POM
350
MOF-INCORPORATED
POM
350
POMS
SUPPORTED
ON
CARBON
NANOTUBES
352
CONCLUSION
AND
OUTLOOK
353
ACKNOWLEDGMENTS
354
REFERENCES
354
11
TAILORING
THE
POROSITY
AND
ACTIVE
SITES
IN
SILICOALUMINOPHOSPHATE
ZEOLITES
AND
THEIR
CATALYTIC
APPLICATIONS
363
JACKY
H.
ADVANI,
ABHINAV
KUMAR,
AND
RAJENDRA
SRIVASTAVA
11.1
11.2
11.3
INTRODUCTION
363
SYNTHESIS
OF
SAPO-N
ZEOLITES
365
CHARACTERIZATION
OF
SAPO
ZEOLITES
370
CONTENTS
XI
11.4
11.4.1
11.4.2
11.4.2.1
11.4.2.2
11.4.2.3
11.4.2.4
11.5
SAPO-BASED
CATALYSTS
IN
ORGANIC
TRANSFORMATIONS
370
ACID
CATALYSIS
370
REDUCTIVE
TRANSFORMATIONS
374
SELECTIVE
CATALYTIC
REDUCTION
(SCR)
374
HYDROISOMERIZATION
379
HYDROPROCESSING
383
CO
2
HYDROGENATION
385
CONCLUSION
387
REFERENCES
388
12
HETEROGENEOUS
PHOTOCATALYTIC
DEGRADATION
OF
PHARMACEUTICAL
POLLUTANTS
OVER
TITANIA
NANOPOROUS
ARCHITECTURES
397
SURYA
KUMAR
VATTI
AND
PARASURAMAN
SELVAM
12.1
12.2
12.2.1
12.2.2
12.2.3
12.2.4
12.2.5
12.3
12.4
12.5
12.6
12.7
12.8
12.8.1
12.8.2
12.8.3
12.8.4
12.9
12.10
12.10.1
12.10.2
12.10.3
12.10.4
12.11
INTRODUCTION
397
ADVANCED
OXIDATION
PROCESS
399
OZONATION
401
UV
IRRADIATION
(PHOTOLYSIS)
401
FENTON
AND
PHOTO-FENTON
PROCESS
402
NEED
FOR
GREEN
SUSTAINABLE
HETEROGENEOUS
AOP
402
HETEROGENEOUS
PHOTOCATALYSIS
402
SEMICONDUCTOR
PHOTOCATALYSIS
MECHANISM
403
FACTORS
AFFECTING
PHOTOCATALYTIC
EFFICIENCY
404
CRYSTAL
PHASES
OF
TIO
2
404
SEMICONDUCTOR/ELECTROLYTE
INTERFACE
AND
SURFACE
REACTION
406
VISIBLE-LIGHT
HARVESTING
409
PHOTOGENERATED
CHARGE
SEPARATION
STRATEGIES
412
TIO
2
/CARBON
HETEROJUNCTION
412
TIO
2
/SC
COUPLED
HETEROJUNCTION
412
TIO
2
/TIO
2
PHASE
JUNCTION
414
METAL/TIO
2
SCHOTTKY
JUNCTION
415
ORDERED
MESOPOROUS
MATERIALS
415
ORDERED
MESOPOROUS
TITANIA
417
SYNTHESIS
AND
CHARACTERIZATION
418
PHOTOCATALYTIC
DEGRADATION
STUDIES
420
COMPLETE
MINERALIZATION
STUDIES
424
SPENT
CATALYST
425
CONCLUSION
427
ACKNOWLEDGMENT
428
REFERENCES
429
13
CATALYTIC
DEHYDRATION
OF
GLYCEROL
OVER
SILICA
AND
ALUMINA-SUPPORTED
HETEROPOLY
ACID
CATALYSTS
433
SEKAR
MAHENDRAN,
SHINYA
HAYAMI,
AND
PARASURAMAN
SELVAM
13.1
13.2
INTRODUCTION
433
VALUE
ADDITION
OF
BIOGLYCEROL
434
XII
I
CONTENTS
13.3
INTERACTION
BETWEEN
HPA
AND
SUPPORT
437
13.4
BULK
HETEROPOLY
ACID
438
13.5
SILICA-SUPPORTED
HPA
439
13.5.1
EFFECT
OF
TEXTURAL
PROPERTIES
OF
SUPPORT
ON
PRODUCT
SELECTIVITY
439
13.5.2
EFFECT
OF
CATALYST
LOADING
440
13.5.3
EFFECT
OF
ACID
SITES
440
13.5.4
EFFECT
OF
TYPE
OF
HETEROPOLY
ACIDS
443
13.6
TUNING
THE
ACIDITY
444
13.7
CONCLUSIONS
446
ACKNOWLEDGMENTS
447
REFERENCES
447
14
CATALYSIS
WITH
CARBON
NANOTUBES
451
MOHAMMAD
Y.
MASAOMI
AND
LIDA
HASHEMI
14.1
INTRODUCTION
451
14.1.1
WHY
CNT
MAY
BE
SUITABLE
TO
BE
USED
AS
CATALYST
SUPPORTS?
451
14.1.1.1
FROM
THE
POINT
OF
STRUCTURAL
FEATURES
452
14.1.1.2
FROM
THE
POINT
OF
ELECTRONIC
PROPERTIES
455
14.1.1.3
FROM
THE
POINT
OF
ADSORPTION
PROPERTIES
455
14.1.1.4
FROM
THE
POINT
OF
MECHANICAL
AND
THERMAL
PROPERTIES
456
14.2
CATALYTIC
PERFORMANCES
OF
CNT-SUPPORTED
SYSTEMS
456
14.2.1
DIFFERENT
APPROACHES
FOR
THE
ANCHORING
OF
METAL-CONTAINING
SPECIES
ON
CNT
457
14.2.2
DIFFERENT
APPROACHES
FOR
THE
CONFINING
NPS
INSIDE
CNTS
AND
THEIR
CHARACTERIZATION
457
14.2.2.1
WET
CHEMISTRY
METHOD
458
14.2.2.2
PRODUCTION
OF
CNTS
INSIDE
ANODIC
ALUMINA
459
14.2.2.3
ARC-DISCHARGE
SYNTHESIS
459
14.2.3
HYDROGENATION
REACTIONS
459
14.2.4
DEHYDROGENATION
REACTIONS
460
14.2.5
LIQUID-PHASE
HYDROFORMYLATION
REACTIONS
461
14.2.6
LIQUID-PHASE
OXIDATION
REACTIONS
462
14.2.7
GAS-PHASE
REACTIONS
464
14.2.7.1
SYNGAS
CONVERSION
464
14.2.7.2
AMMONIA
SYNTHESIS
AND
AMMONIA
DECOMPOSITION
464
14.2.7.3
EPOXIDATION
OF
PROPYLENE
IN
DWCNTS
465
14.2.8
FUEL
CELL
ELECTRO
CATALYST
465
14.2.9
CATALYTIC
DECOMPOSITION
OF
HYDROCARBONS
466
14.2.10
CNT
AS
HETEROGENEOUS
CATALYSTS
466
14.2.11
SULFUR
CATALYSIS
467
14.3
METAL-FREE
CATALYSTS
OF
CNTS
467
14.4
CONCLUSION
468
REFERENCES
469
INDEX
473 |
adam_txt |
CONTENTS
PREFACE
XIII
1
ENGINEERING
OF
METAL
ACTIVE
SITES
IN
MOFS
1
CARMEN
FERNANDEZ-CONDE,
MARIA
ROMERO-ANGEL,
ANA
RUBIO-GASPAR,
AND
CARLOS
MARTI-GASTALDO
1.1
1.1.1
1.1.1.1
1.1.1.2
1.1.2
METAL
NODE
ENGINEERING
2
FRAMEWORKS
WITH
INTRINSICALLY
ACTIVE
METAL
NODES
3
METAL-ORGANIC
FRAMEWORKS
WITH
ONLY
ONE
METAL
3
METAL-ORGANIC
FRAMEWORKS
WITH
MORE
THAN
ONE
METAL
IN
ITS
CLUSTER
6
INTRODUCING
DEFECTIVITY
AS
A
POWERFUL
TOOL
TO
TUNE
METAL-NODE
CATALYTIC
PROPERTIES
IN
MOFS
8
1.1.3
INCORPORATING
METALS
TO
ALREADY-SYNTHETIZED
METAL-ORGANIC
FRAMEWORKS:
ISOLATING
THE
CATALYTIC
SITE
12
1.1.4
1.1.5
1.1.6
1.2
1.2.1
1.2.1.1
1.2.1.2
1.2.1.3
1.2.2
1.2.2.1
1.2.2.2
1.2.2.3
1.2.3
1.2.3.1
METAL
EXCHANGE
14
ATTACHING
METALLIC
UNITS
TO
THE
MOF
14
GRAFTING
OF
ORGANOMETALLIC
COMPLEXES
INTO
THE
MOF
NODES
18
LIGAND
ENGINEERING
21
LIGANDS AS
ACTIVE
METAL
SITES
22
CREATING
METAL
SITES
IN
THE
ORGANIC
LINKERS.
TYPES
OF
LIGANDS
22
COOPERATION
BETWEEN
SINGLE-METAL
SITES
AND
METALLOLIGANDS
28
LIGAND
ACCELERATED
CATALYSIS
(LAC)
28
INTRODUCTION
OF
METALS
BY
DIRECT
SYNTHESIS
31
IN-SITU
METALATION
32
PREMETALATED
LINKER
32
POSTGRAFTING
METAL
COMPLEXES
33
INTRODUCTION
OF
METALS
BY
POST-SYNTHETIC
MODIFICATIONS
34
POST-SYNTHETIC
EXCHANGE
OR
SOLVENT-ASSISTED
LINKER
EXCHANGE
(SALE)
34
1.2.3.2
1.3
1.3.1
POST-SYNTHETIC
METALATION
36
METAL-BASED
GUEST
PORE
ENGINEERING
38
ENCAPSULATION
METHODOLOGIES
IN
AS-MADE
METAL-ORGANIC
FRAMEWORKS
39
1.3.1.1
INCIPIENT
WETNESS
IMPREGNATION
39
VI
CONTENTS
1.3.1.2
1.3.1.3
1.3.1.4
1.3.2
1.3.2.1
1.3.2.2
SHIP-IN-A-BOTTLE
42
METAL-ORGANIC
CHEMICAL
VAPOR
DEPOSITION
(MOCVD)
42
METAL-ION
EXCHANGE
46
IN
SITU
GUEST
METAL-ORGANIC
FRAMEWORK
ENCAPSULATIONS
47
SOLVOTHERMAL
ENCAPSULATION
OR
ONE
POT
47
CO-PRECIPITATION
METHODOLOGIES
49
LIST
OF
ABBREVIATIONS
52
REFERENCES
53
2
ENGINEERING
THE
POROSITY
AND
ACTIVE
SITES
IN
METAL-ORGANIC
FRAMEWORK
67
ASHISH
K.
KAR,
GANESH
S.
MORE,
AND
RAJENDRA
SRIVASTAVA
2.1
2.2
2.2.1
2.2.2
2.2.3
2.3
2.4
INTRODUCTION
67
ACTIVE
SITES
IN
MOF
69
ACTIVE
SITES
NEAR
PORES
IN
MOF
69
ACTIVE
SITES
NEAR
METALLIC
NODES
IN
MOF
70
ACTIVE
SITES
NEAR
LIGAND
CENTER
IN
MOF
70
SYNTHESIS
AND
CHARACTERIZATION
70
ENGINEERING
OF
ACTIVE
SITES
IN
MOF
STRUCTURE
FOR
CATALYTIC
TRANSFORMATIONS
72
2.4.1
2.4.2
2.4.3
2.5
PORE
TUNABILITY
73
METAL
NODES
77
LIGAND
CENTERS
83
CONCLUSION
90
REFERENCES
91
3
CHARACTERIZATION
OF
ORGANIC
LINKER-CONTAINING
POROUS
MATERIALS
AS
NEW
EMERGING
HETEROGENEOUS
CATALYSTS
97
ALI
R.
OVEISI,
SABA
DALIRAN,
AND
YONG
PENG
3.1
3.2
3.2.1
3.2.2
3.2.3
3.3
3.3.1
3.3.1.1
3.3.1.2
3.3.1.3
3.3.2
3.3.3
3.3.4
3.3.5
3.4
3.4.1
3.4.2
INTRODUCTION
97
MICROSCOPY
TECHNIQUES
98
SCANNING
ELECTRON
MICROSCOPY
(SEM)
98
TRANSMISSION
ELECTRON
MICROSCOPY
(TEM)
100
ATOMIC
FORCE
MICROSCOPY
(AFM)
103
SPECTROSCOPY
TECHNIQUES
104
X-RAY
SPECTROSCOPY
104
X-RAY
DIFFRACTION
(XRD)
104
X-RAY
PHOTOELECTRON
SPECTROSCOPY
(XPS)
105
X-RAY
ABSORPTION
FINE
STRUCTURE
(XAFS)
TECHNIQUES
107
NUCLEAR
MAGNETIC
RESONANCE
(NMR)
109
ELECTRON
PARAMAGNETIC
RESONANCE
(EPR)
110
ULTRAVIOLET-VISIBLE
DIFFUSE
REFLECTANCE
SPECTROSCOPY
(UV-VIS
DRS)
111
INDUCTIVELY
COUPLED
PLASMA
(ICP)
ANALYSIS
112
OTHER
TECHNIQUES
114
THERMOGRAVIMETRIC
ANALYSIS
(TGA)
114
N
2
ADSORPTION
115
CONTENTS
VII
3.4.3
DENSITY
FUNCTIONAL
THEORY
(DFT)
CALCULATIONS
118
3.5
CONCLUSIONS
121
ACKNOWLEDGMENTS
121
REFERENCES
121
4
MIXED
LINKER
MOFS
IN
CATALYSIS
127
MOHAMMAD
Y.
MASOOMI
AND
LIDA
HASHEMI
4.1
INTRODUCTION
127
4.1.1
INTRODUCTION
TO
MIXED
LINKER
MOFS
127
4.2
STRATEGIES
FOR
SYNTHESIZING
MIXED-LINKER
MOFS
128
4.2.1
IML
FRAMEWORKS
128
4.2.2
HML
FRAMEWORKS
129
4.2.3
TML
FRAMEWORKS
130
4.3
TYPES
OF
MIXED-LINKER
MOFS
131
4.3.1
PILLARED-LAYER
MIXED-LINKER
MOFS
131
4.3.2
CAGE-DIRECTED
MIXED-LINKER
MOFS
132
4.3.3
CLUSTER-BASED
MIXED-LINKER
MOFS
132
4.3.4
STRUCTURE
TEMPLATED
MIXED-LINKER
MOFS
132
4.4
INTRODUCTION
TO
CATALYSIS
WITH
MOFS
133
4.5
MIXED-LINKER
MOFS
AS
HETEROGENEOUS
CATALYSTS
133
4.5.1
MIXED-LINKER
MOFS
WITH
SIMILAR
SIZE/DIRECTIONALITY
LINKERS
134
4.5.2
MIXED-LINKER
MOFS
WITH
STRUCTURALLY
INDEPENDENT
LINKERS
140
4.6
CONCLUSION
148
REFERENCES
148
5
ACID-CATALYZED
DIASTEREOSELECTIVE
REACTIONS
INSIDE
MOF
PORES
151
HERME
G.
BALDOVI,
SERGIO
NAVALON,
AND
FRANCESC
X.
LLABRES
I
XAMENA
5.1
INTRODUCTION
151
5.2
DIASTEREOSELECTIVE
REACTIONS
CATALYZED
BY
MOFS
154
5.2.1
MEERWEIN-PONNDORF
-
VERLEY
REDUCTION
OF
CARBONYL
COMPOUNDS
154
5.2.2
ALDOL
ADDITION
REACTIONS
158
5.2.3
DIELS-ALDER
REACTION
162
5.2.4
ISOMERIZATION
REACTIONS
164
5.2.5
CYCLOPROPANATION
168
5.3
CONCLUSIONS
AND
OUTLOOK
176
ACKNOWLEDGMENTS
176
REFERENCES
176
6
CHIRAL
MOFS
FOR
ASYMMETRIC
CATALYSIS
181
KAYHANEH
BERIJANI
AND
ALI
MORSALI
6.1
CHIRAL
METAL-ORGANIC
FRAMEWORKS
(CMOFS)
181
6.2
SYNTHESIS
METHODS
OF
CMOFS
WITH
ACHIRAL
AND
CHIRAL
BUILDING
BLOCKS
184
6.2.1
SPONTANEOUS
RESOLUTION
185
VIII
CONTENTS
6.2.2
6.2.3
6.3
6.3.1
6.3.2
6.4
DIRECT
SYNTHESIS
187
INDIRECT
SYNTHESIS
190
CHIRAL
MOF
CATALYSTS
192
BRIEF
HISTORY
OF
CMOF-BASED
CATALYSTS
192
DESIGNING
CMOF
CATALYSTS
193
EXAMPLES
OF
ENANTIOSELECTIVE
CATALYSIS
USING
CMOF-BASED
CATALYSTS
194
6.4.1
6.4.2
6.5
TYPE
I:
CHIRAL
MOFS
IN
SIMPLE
ASYMMETRIC
REACTIONS
194
TYPE
II:
CHIRAL
MOFS
IN
COMPLEX
ASYMMETRIC
REACTIONS
206
CONCLUSION
210
REFERENCES
210
7
MOF-SUPPORTED
METAL
NANOPARTICLES
FOR
CATALYTIC
APPLICATIONS
219
DANYU
GUO,
LIYU
CHEN,
AND
YINGWEI
LI
7.1
7.2
7.2.1
7.2.2
7.2.3
7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.4.1
7.3.4.2
7.3.4.3
7.3.5
7.3.6
7.4
7.4.1
7.4.2
7.4.2.1
7.4.2.2
7.4.2.3
7.4.3
7.4.3.1
7.4.3.2
7.4.3.3
7.4.4
7.4.4.1
7.4.4.2
INTRODUCTION
219
SYNERGISTIC
CATALYSIS
BY
MNP@MOF
COMPOSITES
220
THE
INORGANIC
NODES
OF
MOFS
COOPERATING
WITH
METAL
NPS
220
THE
ORGANIC
LINKERS
OF
MOFS
COOPERATING
WITH
METAL
NPS
220
THE
NANOSTRUCTURES
OF
MOFS
COOPERATING
WITH
METAL
NPS
221
ELECTROCATALYSIS
APPLICATIONS
221
HYDROGEN
EVOLUTION
REACTION
221
OXYGEN
EVOLUTION
REACTION
223
OXYGEN
REDUCTION
REACTION
224
CO2
REDUCTION
REACTION
224
CO
225
HCOOH
225
C
H4
225
NITROGEN
REDUCTION
REACTION
227
OXIDATION
OF
SMALL
MOLECULES
228
PHOTOCATALYTIC
APPLICATIONS
229
PHOTOCATALYTIC
HYDROGEN
PRODUCTION
229
PHOTOCATALYTIC
CO
2
REDUCTION
232
CO
2
PHOTOREDUCTION
TO
CO
232
CO
2
PHOTOREDUCTION
TO
CH,OH
233
CO
2
PHOTOREDUCTION
TO
HCOO-/HCOOH
234
PHOTOCATALYTIC
ORGANIC
REACTIONS
235
PHOTOCATALYTIC
HYDROGENATION
REACTIONS
235
PHOTOCATALYTIC
OXIDATION
REACTIONS
235
PHOTOCATALYTIC
COUPLING
REACTION
236
PHOTOCATALYTIC
DEGRADATION
OF
ORGANIC
POLLUTANTS
237
DEGRADATION
OF
POLLUTANTS
IN
WASTEWATER
237
DEGRADATION
OF
GAS-PHASE
ORGANIC
COMPOUNDS
239
CONTENTS
IX
7.5
7.5.1
7.5.1.1
7.5.1.2
7.5.2
7.5.2.1
7.5.2.2
7.5.2.3
7.5.3
7.5.3.1
7.5.3.2
7.5.3.3
7.5.3.4
7.5.3.5
7.5.4
7.5.5
7.6
THERMOCATALYTIC
APPLICATIONS
239
OXIDATION
REACTIONS
239
GAS-PHASE
OXIDATION
REACTIONS
239
LIQUID-PHASE
OXIDATION
REACTIONS
240
HYDROGENATION
REACTIONS
241
HYDROGENATION
OF
C=C
AND
C=C
GROUPS
241
THE
REDUCTION
OF
-
NO
2
GROUP
242
THE
REDUCTION
OF
C=0
GROUPS
244
COUPLING
REACTIONS
244
SUZUKI-MIYAURA
COUPLING
REACTIONS
244
HECK
COUPLING
REACTIONS
246
GLASER
COUPLING
REACTIONS
246
KNOEVENAGEL
CONDENSATION
REACTION
246
THREE-COMPONENT
COUPLING
REACTION
247
CO
2
CYCLOADDITION
REACTIONS
247
TANDEM
REACTIONS
248
CONCLUSIONS
AND
OUTLOOKS
250
REFERENCES
251
8
CONFINEMENT
EFFECTS
IN
CATALYSIS
WITH
MOLECULAR
COMPLEXES
IMMOBILIZED
INTO
POROUS
MATERIALS
273
MARYSE
GOUYGOU,
PHILIPPE
SERP,
AND
JEROME
DURAND
8.1
8.2
8.2.1
8.2.2
8.2.3
INTRODUCTION
273
IMMOBILIZATION
OF
MOLECULAR
COMPLEXES
INTO
POROUS
MATERIALS
279
CONFINEMENT
OF
MOLECULAR
COMPLEXES
IN
MESOPOROUS
SILICA
279
CONFINEMENT
OF
MOLECULAR
COMPLEXES
IN
ZEOLITES
281
CONFINEMENT
OF
MOLECULAR
COMPLEXES
IN
COVALENT
ORGANIC
FRAMEWORKS
(COF)
282
8.2.4
CONFINEMENT
OF
MOLECULAR
COMPLEXES
IN
METAL-ORGANIC
FRAMEWORKS
(MOFS)
283
8.2.5
8.3
CONFINEMENT
OF
MOLECULAR
COMPLEXES
IN
CARBON
MATERIALS
285
CHARACTERIZATION
OF
MOLECULAR
COMPLEXES
IMMOBILIZED
INTO
POROUS
MATERIALS
285
8.4
CATALYSIS
WITH
MOLECULAR
COMPLEXES
IMMOBILIZED
INTO
POROUS
MATERIALS
AND
EVIDENCES
OF
CONFINEMENT
EFFECTS
287
8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
8.4.6.1
8.4.6.2
HYDROGENATION
REACTIONS
288
HYDROFORMYLATION
REACTIONS
289
OXIDATION
REACTIONS
290
ETHYLENE
OLIGOMERIZATION
AND
POLYMERIZATION
REACTIONS
291
METATHESIS
REACTIONS
291
MISCELLANEOUS
REACTIONS
ON
VARIOUS
SUPPORTS
293
ZEOLITES
293
MESOPOROUS
SILICA
293
CONTENTS
8.4.6.3
8.4.7
8.5
MOFS
294
ASYMMETRIC
CATALYSIS
REACTIONS
295
CONCLUSION
298
REFERENCES
299
9
SIZE-SELECTIVE
CATALYSIS
BY
METAL-ORGANIC
FRAMEWORKS
315
AMARAJOTHI
DHAKSHINAMOORTHY
AND
HERMENEGILDO
GARCIA
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
INTRODUCTION
315
FRIEDEL-CRAFTS
ALKYLATION
319
CYCLOADDITION
REACTIONS
320
OXIDATION
OF
OLEFINS
323
HYDROGENATION
REACTIONS
325
ALDEHYDE
CYANOSILYLATION
326
KNOEVENAGEL
CONDENSATION
328
CONCLUSIONS
329
REFERENCES
330
10
SELECTIVE
OXIDATIONS
IN
CONFINED
ENVIRONMENT
333
OXANA
A.
KHOLDEEVA
10.1
10.2
10.2.1
10.2.2
10.3
10.3.1
10.3.2
10.3.3
10.4
10.4.1
10.4.2
10.5
10.5.1
10.5.2
10.5.3
10.6
INTRODUCTION
333
TRANSITION-METAL-SUBSTITUTED
MOLECULAR
SIEVES
334
TI-SUBSTITUTED
ZEOLITES
AND
H
2
O
2
334
CO-SUBSTITUTED
ALUMINOPHOSPHATES
AND
O
2
337
MESOPOROUS
METAL-SILICATES
338
MESOPOROUS
TI-SILICATES
IN
OXIDATION
OF
HYDROCARBONS
339
MESOPOROUS
TI-SILICATES
IN
OXIDATION
OF
BULKY
PHENOLS
340
ALKENE
EPOXIDATION
OVER
MESOPOROUS
NB-SILICATES
342
METAL-ORGANIC
FRAMEWORKS
343
SELECTIVE
OXIDATIONS
OVER
CR
AND
FE-BASED
MOFS
343
SELECTIVE
OXIDATIONS
WITH
H
2
O
2
OVER
ZR
AND
TI-BASED
MOFS
347
POLYOXOMETALATES
IN
CONFINED
ENVIRONMENT
349
SILICA-ENCAPSULATED
POM
350
MOF-INCORPORATED
POM
350
POMS
SUPPORTED
ON
CARBON
NANOTUBES
352
CONCLUSION
AND
OUTLOOK
353
ACKNOWLEDGMENTS
354
REFERENCES
354
11
TAILORING
THE
POROSITY
AND
ACTIVE
SITES
IN
SILICOALUMINOPHOSPHATE
ZEOLITES
AND
THEIR
CATALYTIC
APPLICATIONS
363
JACKY
H.
ADVANI,
ABHINAV
KUMAR,
AND
RAJENDRA
SRIVASTAVA
11.1
11.2
11.3
INTRODUCTION
363
SYNTHESIS
OF
SAPO-N
ZEOLITES
365
CHARACTERIZATION
OF
SAPO
ZEOLITES
370
CONTENTS
XI
11.4
11.4.1
11.4.2
11.4.2.1
11.4.2.2
11.4.2.3
11.4.2.4
11.5
SAPO-BASED
CATALYSTS
IN
ORGANIC
TRANSFORMATIONS
370
ACID
CATALYSIS
370
REDUCTIVE
TRANSFORMATIONS
374
SELECTIVE
CATALYTIC
REDUCTION
(SCR)
374
HYDROISOMERIZATION
379
HYDROPROCESSING
383
CO
2
HYDROGENATION
385
CONCLUSION
387
REFERENCES
388
12
HETEROGENEOUS
PHOTOCATALYTIC
DEGRADATION
OF
PHARMACEUTICAL
POLLUTANTS
OVER
TITANIA
NANOPOROUS
ARCHITECTURES
397
SURYA
KUMAR
VATTI
AND
PARASURAMAN
SELVAM
12.1
12.2
12.2.1
12.2.2
12.2.3
12.2.4
12.2.5
12.3
12.4
12.5
12.6
12.7
12.8
12.8.1
12.8.2
12.8.3
12.8.4
12.9
12.10
12.10.1
12.10.2
12.10.3
12.10.4
12.11
INTRODUCTION
397
ADVANCED
OXIDATION
PROCESS
399
OZONATION
401
UV
IRRADIATION
(PHOTOLYSIS)
401
FENTON
AND
PHOTO-FENTON
PROCESS
402
NEED
FOR
GREEN
SUSTAINABLE
HETEROGENEOUS
AOP
402
HETEROGENEOUS
PHOTOCATALYSIS
402
SEMICONDUCTOR
PHOTOCATALYSIS
MECHANISM
403
FACTORS
AFFECTING
PHOTOCATALYTIC
EFFICIENCY
404
CRYSTAL
PHASES
OF
TIO
2
404
SEMICONDUCTOR/ELECTROLYTE
INTERFACE
AND
SURFACE
REACTION
406
VISIBLE-LIGHT
HARVESTING
409
PHOTOGENERATED
CHARGE
SEPARATION
STRATEGIES
412
TIO
2
/CARBON
HETEROJUNCTION
412
TIO
2
/SC
COUPLED
HETEROJUNCTION
412
TIO
2
/TIO
2
PHASE
JUNCTION
414
METAL/TIO
2
SCHOTTKY
JUNCTION
415
ORDERED
MESOPOROUS
MATERIALS
415
ORDERED
MESOPOROUS
TITANIA
417
SYNTHESIS
AND
CHARACTERIZATION
418
PHOTOCATALYTIC
DEGRADATION
STUDIES
420
COMPLETE
MINERALIZATION
STUDIES
424
SPENT
CATALYST
425
CONCLUSION
427
ACKNOWLEDGMENT
428
REFERENCES
429
13
CATALYTIC
DEHYDRATION
OF
GLYCEROL
OVER
SILICA
AND
ALUMINA-SUPPORTED
HETEROPOLY
ACID
CATALYSTS
433
SEKAR
MAHENDRAN,
SHINYA
HAYAMI,
AND
PARASURAMAN
SELVAM
13.1
13.2
INTRODUCTION
433
VALUE
ADDITION
OF
BIOGLYCEROL
434
XII
I
CONTENTS
13.3
INTERACTION
BETWEEN
HPA
AND
SUPPORT
437
13.4
BULK
HETEROPOLY
ACID
438
13.5
SILICA-SUPPORTED
HPA
439
13.5.1
EFFECT
OF
TEXTURAL
PROPERTIES
OF
SUPPORT
ON
PRODUCT
SELECTIVITY
439
13.5.2
EFFECT
OF
CATALYST
LOADING
440
13.5.3
EFFECT
OF
ACID
SITES
440
13.5.4
EFFECT
OF
TYPE
OF
HETEROPOLY
ACIDS
443
13.6
TUNING
THE
ACIDITY
444
13.7
CONCLUSIONS
446
ACKNOWLEDGMENTS
447
REFERENCES
447
14
CATALYSIS
WITH
CARBON
NANOTUBES
451
MOHAMMAD
Y.
MASAOMI
AND
LIDA
HASHEMI
14.1
INTRODUCTION
451
14.1.1
WHY
CNT
MAY
BE
SUITABLE
TO
BE
USED
AS
CATALYST
SUPPORTS?
451
14.1.1.1
FROM
THE
POINT
OF
STRUCTURAL
FEATURES
452
14.1.1.2
FROM
THE
POINT
OF
ELECTRONIC
PROPERTIES
455
14.1.1.3
FROM
THE
POINT
OF
ADSORPTION
PROPERTIES
455
14.1.1.4
FROM
THE
POINT
OF
MECHANICAL
AND
THERMAL
PROPERTIES
456
14.2
CATALYTIC
PERFORMANCES
OF
CNT-SUPPORTED
SYSTEMS
456
14.2.1
DIFFERENT
APPROACHES
FOR
THE
ANCHORING
OF
METAL-CONTAINING
SPECIES
ON
CNT
457
14.2.2
DIFFERENT
APPROACHES
FOR
THE
CONFINING
NPS
INSIDE
CNTS
AND
THEIR
CHARACTERIZATION
457
14.2.2.1
WET
CHEMISTRY
METHOD
458
14.2.2.2
PRODUCTION
OF
CNTS
INSIDE
ANODIC
ALUMINA
459
14.2.2.3
ARC-DISCHARGE
SYNTHESIS
459
14.2.3
HYDROGENATION
REACTIONS
459
14.2.4
DEHYDROGENATION
REACTIONS
460
14.2.5
LIQUID-PHASE
HYDROFORMYLATION
REACTIONS
461
14.2.6
LIQUID-PHASE
OXIDATION
REACTIONS
462
14.2.7
GAS-PHASE
REACTIONS
464
14.2.7.1
SYNGAS
CONVERSION
464
14.2.7.2
AMMONIA
SYNTHESIS
AND
AMMONIA
DECOMPOSITION
464
14.2.7.3
EPOXIDATION
OF
PROPYLENE
IN
DWCNTS
465
14.2.8
FUEL
CELL
ELECTRO
CATALYST
465
14.2.9
CATALYTIC
DECOMPOSITION
OF
HYDROCARBONS
466
14.2.10
CNT
AS
HETEROGENEOUS
CATALYSTS
466
14.2.11
SULFUR
CATALYSIS
467
14.3
METAL-FREE
CATALYSTS
OF
CNTS
467
14.4
CONCLUSION
468
REFERENCES
469
INDEX
473 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | García, Hermenegildo 1957- Dhakshinamoorthy, Amarajothi |
author2_role | edt edt |
author2_variant | h g hg a d ad |
author_GND | (DE-588)1156876729 (DE-588)1317680235 |
author_facet | García, Hermenegildo 1957- Dhakshinamoorthy, Amarajothi |
building | Verbundindex |
bvnumber | BV049482788 |
classification_rvk | VK 5570 VE 7040 VH 9600 |
classification_tum | CHE 167 |
ctrlnum | (OCoLC)1418689792 (DE-599)DNB1288412630 |
discipline | Chemie / Pharmazie Physik Chemie |
discipline_str_mv | Chemie / Pharmazie Physik Chemie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV049482788</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240613</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">240102s2024 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">23,N19</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1288412630</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527350896</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-3-527-35089-6</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527350896</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1418689792</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1288412630</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VK 5570</subfield><subfield code="0">(DE-625)147405:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 7040</subfield><subfield code="0">(DE-625)147136:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VH 9600</subfield><subfield code="0">(DE-625)147383:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">540</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 167</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Catalysis in confined frameworks</subfield><subfield code="b">synthesis, characterization, and applications</subfield><subfield code="c">edited by Hermenegildo Garcia and Amarajothi Dhakshinamoorthy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">[2024]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2024</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 482 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben und Index</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Katalyse</subfield><subfield code="0">(DE-588)4029921-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Metallorganisches Netzwerk</subfield><subfield code="0">(DE-588)7755315-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Catalysis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Industrial Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Katalyse</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Materials Science</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Materialwissenschaften</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Poröse Materialien</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Porous Materials</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Technische u. Industrielle Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CH30: Technische u. Industrielle Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CH40: Katalyse</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">MSK0: Poröse Materialien</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Katalyse</subfield><subfield code="0">(DE-588)4029921-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Metallorganisches Netzwerk</subfield><subfield code="0">(DE-588)7755315-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">García, Hermenegildo</subfield><subfield code="d">1957-</subfield><subfield code="0">(DE-588)1156876729</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dhakshinamoorthy, Amarajothi</subfield><subfield code="0">(DE-588)1317680235</subfield><subfield code="4">edt</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Wiley-VCH</subfield><subfield code="0">(DE-588)16179388-5</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-527-83925-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-527-83926-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-527-83927-8</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034828218&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">vlb</subfield><subfield code="d">20230506</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#vlb</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV049482788 |
illustrated | Illustrated |
index_date | 2024-07-03T23:18:21Z |
indexdate | 2024-07-20T06:04:17Z |
institution | BVB |
institution_GND | (DE-588)16179388-5 |
isbn | 9783527350896 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034828218 |
oclc_num | 1418689792 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-11 DE-19 DE-BY-UBM |
owner_facet | DE-91G DE-BY-TUM DE-11 DE-19 DE-BY-UBM |
physical | xiv, 482 Seiten Illustrationen, Diagramme |
publishDate | 2024 |
publishDateSearch | 2024 |
publishDateSort | 2024 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Catalysis in confined frameworks synthesis, characterization, and applications edited by Hermenegildo Garcia and Amarajothi Dhakshinamoorthy Weinheim Wiley-VCH [2024] © 2024 xiv, 482 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Literaturangaben und Index Katalyse (DE-588)4029921-1 gnd rswk-swf Metallorganisches Netzwerk (DE-588)7755315-9 gnd rswk-swf Catalysis Chemie Chemistry Industrial Chemistry Katalyse Materials Science Materialwissenschaften Poröse Materialien Porous Materials Technische u. Industrielle Chemie CH30: Technische u. Industrielle Chemie CH40: Katalyse MSK0: Poröse Materialien (DE-588)4143413-4 Aufsatzsammlung gnd-content Katalyse (DE-588)4029921-1 s Metallorganisches Netzwerk (DE-588)7755315-9 s DE-604 García, Hermenegildo 1957- (DE-588)1156876729 edt Dhakshinamoorthy, Amarajothi (DE-588)1317680235 edt Wiley-VCH (DE-588)16179388-5 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-527-83925-4 Erscheint auch als Online-Ausgabe, EPUB 978-3-527-83926-1 Erscheint auch als Online-Ausgabe 978-3-527-83927-8 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034828218&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p vlb 20230506 DE-101 https://d-nb.info/provenance/plan#vlb |
spellingShingle | Catalysis in confined frameworks synthesis, characterization, and applications Katalyse (DE-588)4029921-1 gnd Metallorganisches Netzwerk (DE-588)7755315-9 gnd |
subject_GND | (DE-588)4029921-1 (DE-588)7755315-9 (DE-588)4143413-4 |
title | Catalysis in confined frameworks synthesis, characterization, and applications |
title_auth | Catalysis in confined frameworks synthesis, characterization, and applications |
title_exact_search | Catalysis in confined frameworks synthesis, characterization, and applications |
title_exact_search_txtP | Catalysis in confined frameworks synthesis, characterization, and applications |
title_full | Catalysis in confined frameworks synthesis, characterization, and applications edited by Hermenegildo Garcia and Amarajothi Dhakshinamoorthy |
title_fullStr | Catalysis in confined frameworks synthesis, characterization, and applications edited by Hermenegildo Garcia and Amarajothi Dhakshinamoorthy |
title_full_unstemmed | Catalysis in confined frameworks synthesis, characterization, and applications edited by Hermenegildo Garcia and Amarajothi Dhakshinamoorthy |
title_short | Catalysis in confined frameworks |
title_sort | catalysis in confined frameworks synthesis characterization and applications |
title_sub | synthesis, characterization, and applications |
topic | Katalyse (DE-588)4029921-1 gnd Metallorganisches Netzwerk (DE-588)7755315-9 gnd |
topic_facet | Katalyse Metallorganisches Netzwerk Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=034828218&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT garciahermenegildo catalysisinconfinedframeworkssynthesischaracterizationandapplications AT dhakshinamoorthyamarajothi catalysisinconfinedframeworkssynthesischaracterizationandapplications AT wileyvch catalysisinconfinedframeworkssynthesischaracterizationandapplications |