Peeling random planar maps: École d'Été de Probabilités de Saint-Flour XLIX - 2019
These Lecture Notes provide an introduction to the study of those discrete surfaces which are obtained by randomly gluing polygons along their sides in a plane. The focus is on the geometry of such random planar maps (diameter, volume growth, scaling and local limits...) as well as the behavior of s...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Tagungsbericht Buch |
Sprache: | English |
Veröffentlicht: |
Cham, Switzerland
Springer
[2023]
|
Schriftenreihe: | Lecture notes in mathematics
Volume 2335 |
Schlagworte: | |
Zusammenfassung: | These Lecture Notes provide an introduction to the study of those discrete surfaces which are obtained by randomly gluing polygons along their sides in a plane. The focus is on the geometry of such random planar maps (diameter, volume growth, scaling and local limits...) as well as the behavior of statistical mechanics models on them (percolation, simple random walks, self-avoiding random walks...). A "Markovian" approach is adopted to explore these random discrete surfaces, which is then related to the analogous one-dimensional random walk processes. This technique, known as "peeling exploration" in the literature, can be seen as a generalization of the well-known coding processes for random trees (e.g. breadth first or depth first search). It is revealed that different types of Markovian explorations can yield different types of information about a surface. Based on an École d'Été de Probabilités de Saint-Flour course delivered by the author in 2019, the book is aimed at PhD students and researchers interested in graph theory, combinatorial probability and geometry. Featuring open problems and a wealth of interesting figures, it is the first book to be published on the theory of random planar maps. |
ISBN: | 9783031368530 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV049471326 | ||
003 | DE-604 | ||
005 | 20240719 | ||
007 | t | ||
008 | 231218s2023 |||| 10||| eng d | ||
020 | |a 9783031368530 |9 978-3-031-36853-0 | ||
035 | |a (OCoLC)1415632349 | ||
035 | |a (DE-599)HBZHT030617453 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-188 |a DE-83 | ||
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a 60-06 |2 msc/2020 | ||
100 | 1 | |a Curien, Nicolas |0 (DE-588)1313845981 |4 aut | |
245 | 1 | 0 | |a Peeling random planar maps |b École d'Été de Probabilités de Saint-Flour XLIX - 2019 |c Nicolas Curien |
264 | 1 | |a Cham, Switzerland |b Springer |c [2023] | |
264 | 4 | |c © 2023 | |
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v Volume 2335 | |
520 | |a These Lecture Notes provide an introduction to the study of those discrete surfaces which are obtained by randomly gluing polygons along their sides in a plane. The focus is on the geometry of such random planar maps (diameter, volume growth, scaling and local limits...) as well as the behavior of statistical mechanics models on them (percolation, simple random walks, self-avoiding random walks...). A "Markovian" approach is adopted to explore these random discrete surfaces, which is then related to the analogous one-dimensional random walk processes. This technique, known as "peeling exploration" in the literature, can be seen as a generalization of the well-known coding processes for random trees (e.g. breadth first or depth first search). It is revealed that different types of Markovian explorations can yield different types of information about a surface. Based on an École d'Été de Probabilités de Saint-Flour course delivered by the author in 2019, the book is aimed at PhD students and researchers interested in graph theory, combinatorial probability and geometry. Featuring open problems and a wealth of interesting figures, it is the first book to be published on the theory of random planar maps. | ||
650 | 4 | |a Probabilities | |
650 | 4 | |a Graph theory | |
650 | 4 | |a Geometry | |
650 | 4 | |a Stochastic processes | |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
711 | 2 | |a École d'été de probabilités de Saint-Flour |n 49. |d 2019 |c Saint-Flour |0 (DE-588)1315438526 |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-03136-855-4 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-031-36854-7 |w (DE-604)BV049441761 |
830 | 0 | |a Lecture notes in mathematics |v Volume 2335 |w (DE-604)BV000676446 |9 2335 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034816922 |
Datensatz im Suchindex
_version_ | 1805088032146063360 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Curien, Nicolas |
author_GND | (DE-588)1313845981 |
author_facet | Curien, Nicolas |
author_role | aut |
author_sort | Curien, Nicolas |
author_variant | n c nc |
building | Verbundindex |
bvnumber | BV049471326 |
classification_rvk | SI 850 |
ctrlnum | (OCoLC)1415632349 (DE-599)HBZHT030617453 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Conference Proceeding Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV049471326</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240719</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">231218s2023 |||| 10||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031368530</subfield><subfield code="9">978-3-031-36853-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1415632349</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT030617453</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60-06</subfield><subfield code="2">msc/2020</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Curien, Nicolas</subfield><subfield code="0">(DE-588)1313845981</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Peeling random planar maps</subfield><subfield code="b">École d'Été de Probabilités de Saint-Flour XLIX - 2019</subfield><subfield code="c">Nicolas Curien</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">Volume 2335</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">These Lecture Notes provide an introduction to the study of those discrete surfaces which are obtained by randomly gluing polygons along their sides in a plane. The focus is on the geometry of such random planar maps (diameter, volume growth, scaling and local limits...) as well as the behavior of statistical mechanics models on them (percolation, simple random walks, self-avoiding random walks...). A "Markovian" approach is adopted to explore these random discrete surfaces, which is then related to the analogous one-dimensional random walk processes. This technique, known as "peeling exploration" in the literature, can be seen as a generalization of the well-known coding processes for random trees (e.g. breadth first or depth first search). It is revealed that different types of Markovian explorations can yield different types of information about a surface. Based on an École d'Été de Probabilités de Saint-Flour course delivered by the author in 2019, the book is aimed at PhD students and researchers interested in graph theory, combinatorial probability and geometry. Featuring open problems and a wealth of interesting figures, it is the first book to be published on the theory of random planar maps.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="711" ind1="2" ind2=" "><subfield code="a">École d'été de probabilités de Saint-Flour</subfield><subfield code="n">49.</subfield><subfield code="d">2019</subfield><subfield code="c">Saint-Flour</subfield><subfield code="0">(DE-588)1315438526</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-03136-855-4</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-031-36854-7</subfield><subfield code="w">(DE-604)BV049441761</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">Volume 2335</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">2335</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034816922</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV049471326 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:16:31Z |
indexdate | 2024-07-20T09:01:34Z |
institution | BVB |
institution_GND | (DE-588)1315438526 |
isbn | 9783031368530 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034816922 |
oclc_num | 1415632349 |
open_access_boolean | |
owner | DE-188 DE-83 |
owner_facet | DE-188 DE-83 |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Springer |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics |
spelling | Curien, Nicolas (DE-588)1313845981 aut Peeling random planar maps École d'Été de Probabilités de Saint-Flour XLIX - 2019 Nicolas Curien Cham, Switzerland Springer [2023] © 2023 txt rdacontent n rdamedia nc rdacarrier Lecture notes in mathematics Volume 2335 These Lecture Notes provide an introduction to the study of those discrete surfaces which are obtained by randomly gluing polygons along their sides in a plane. The focus is on the geometry of such random planar maps (diameter, volume growth, scaling and local limits...) as well as the behavior of statistical mechanics models on them (percolation, simple random walks, self-avoiding random walks...). A "Markovian" approach is adopted to explore these random discrete surfaces, which is then related to the analogous one-dimensional random walk processes. This technique, known as "peeling exploration" in the literature, can be seen as a generalization of the well-known coding processes for random trees (e.g. breadth first or depth first search). It is revealed that different types of Markovian explorations can yield different types of information about a surface. Based on an École d'Été de Probabilités de Saint-Flour course delivered by the author in 2019, the book is aimed at PhD students and researchers interested in graph theory, combinatorial probability and geometry. Featuring open problems and a wealth of interesting figures, it is the first book to be published on the theory of random planar maps. Probabilities Graph theory Geometry Stochastic processes (DE-588)1071861417 Konferenzschrift gnd-content École d'été de probabilités de Saint-Flour 49. 2019 Saint-Flour (DE-588)1315438526 oth Erscheint auch als Online-Ausgabe 978-3-03136-855-4 Erscheint auch als Online-Ausgabe 978-3-031-36854-7 (DE-604)BV049441761 Lecture notes in mathematics Volume 2335 (DE-604)BV000676446 2335 |
spellingShingle | Curien, Nicolas Peeling random planar maps École d'Été de Probabilités de Saint-Flour XLIX - 2019 Probabilities Graph theory Geometry Stochastic processes Lecture notes in mathematics |
subject_GND | (DE-588)1071861417 |
title | Peeling random planar maps École d'Été de Probabilités de Saint-Flour XLIX - 2019 |
title_auth | Peeling random planar maps École d'Été de Probabilités de Saint-Flour XLIX - 2019 |
title_exact_search | Peeling random planar maps École d'Été de Probabilités de Saint-Flour XLIX - 2019 |
title_exact_search_txtP | Peeling random planar maps École d'Été de Probabilités de Saint-Flour XLIX - 2019 |
title_full | Peeling random planar maps École d'Été de Probabilités de Saint-Flour XLIX - 2019 Nicolas Curien |
title_fullStr | Peeling random planar maps École d'Été de Probabilités de Saint-Flour XLIX - 2019 Nicolas Curien |
title_full_unstemmed | Peeling random planar maps École d'Été de Probabilités de Saint-Flour XLIX - 2019 Nicolas Curien |
title_short | Peeling random planar maps |
title_sort | peeling random planar maps ecole d ete de probabilites de saint flour xlix 2019 |
title_sub | École d'Été de Probabilités de Saint-Flour XLIX - 2019 |
topic | Probabilities Graph theory Geometry Stochastic processes |
topic_facet | Probabilities Graph theory Geometry Stochastic processes Konferenzschrift |
volume_link | (DE-604)BV000676446 |
work_keys_str_mv | AT curiennicolas peelingrandomplanarmapsecoledetedeprobabilitesdesaintflourxlix2019 AT ecoledetedeprobabilitesdesaintfloursaintflour peelingrandomplanarmapsecoledetedeprobabilitesdesaintflourxlix2019 |