Solutions to linear matrix equations and their applications:
This book addresses both the basic and applied aspects of the finite iterative algorithm, CGLS iterative algorithm, and explicit algorithm to some linear matrix equations. The author presents the latest results in three parts: (1) We consider the finite iterative algorithm to the coupled transpose m...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Les Ulis
EDP Sciences
[2023]
Les Ulis Science Press [2023] |
Schlagworte: | |
Online-Zugang: | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-91 DE-20 DE-706 DE-739 Volltext |
Zusammenfassung: | This book addresses both the basic and applied aspects of the finite iterative algorithm, CGLS iterative algorithm, and explicit algorithm to some linear matrix equations. The author presents the latest results in three parts: (1) We consider the finite iterative algorithm to the coupled transpose matrix equations and the coupled operator matrix equations with sub-matrix constrained. These two finite iterative algorithms are closely related and progressive. (2) We present MCGLS iterative algorithm for studying least squares problems to the generalized Sylvester-conjugate matrix equation, the generalized Sylvester-conjugate transpose matrix equation, and the coupled linear operator systems, respectively. (3) Compared with the previous two parts, we consider here the explicit solution to some linear matrix equations, which are the nonhomogeneous Yakubovich matrix equation, the nonhomogeneous Yakubovich transpose matrix equation, and the generalized Sylvester matrix equation, respectively. This book is intended for students, researchers, and professionals in the field of numerical algebra, linear matrix equations, nonlinear matrix equations, and control theory |
Beschreibung: | 1 Online-Ressource (VI, 184 Seiten) |
ISBN: | 9782759831036 |
DOI: | 10.1051/978-2-7598-3103-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV049469089 | ||
003 | DE-604 | ||
005 | 20240820 | ||
007 | cr|uuu---uuuuu | ||
008 | 231215s2023 |||| o||u| ||||||eng d | ||
020 | |a 9782759831036 |9 978-2-7598-3103-6 | ||
024 | 7 | |a 10.1051/978-2-7598-3103-6 |2 doi | |
035 | |a (ZDB-23-DGG)9782759831036 | ||
035 | |a (OCoLC)1414551116 | ||
035 | |a (DE-599)BVBBV049469089 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1046 |a DE-858 |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 |a DE-91 |a DE-11 |a DE-20 |a DE-706 | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Song, Caiqin |e Verfasser |4 aut | |
245 | 1 | 0 | |a Solutions to linear matrix equations and their applications |c Caiqin Song |
264 | 1 | |a Les Ulis |b EDP Sciences |c [2023] | |
264 | 1 | |a Les Ulis |b Science Press |c [2023] | |
264 | 4 | |c © 2023 | |
300 | |a 1 Online-Ressource (VI, 184 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a This book addresses both the basic and applied aspects of the finite iterative algorithm, CGLS iterative algorithm, and explicit algorithm to some linear matrix equations. The author presents the latest results in three parts: (1) We consider the finite iterative algorithm to the coupled transpose matrix equations and the coupled operator matrix equations with sub-matrix constrained. These two finite iterative algorithms are closely related and progressive. (2) We present MCGLS iterative algorithm for studying least squares problems to the generalized Sylvester-conjugate matrix equation, the generalized Sylvester-conjugate transpose matrix equation, and the coupled linear operator systems, respectively. (3) Compared with the previous two parts, we consider here the explicit solution to some linear matrix equations, which are the nonhomogeneous Yakubovich matrix equation, the nonhomogeneous Yakubovich transpose matrix equation, and the generalized Sylvester matrix equation, respectively. This book is intended for students, researchers, and professionals in the field of numerical algebra, linear matrix equations, nonlinear matrix equations, and control theory | ||
650 | 7 | |a MATHEMATICS / Matrices |2 bisacsh | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-2-7598-3102-9 |
856 | 4 | 0 | |u https://doi.org/10.1051/978-2-7598-3103-6 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-DMA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034814718 | |
966 | e | |u https://doi.org/10.1051/978-2-7598-3103-6 |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1051/978-2-7598-3103-6 |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1051/978-2-7598-3103-6 |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1051/978-2-7598-3103-6 |l DE-Aug4 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1051/978-2-7598-3103-6 |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1051/978-2-7598-3103-6 |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1051/978-2-7598-3103-6 |l DE-91 |p ZDB-23-DMA |q TUM_Paketkauf_2023 |x Verlag |3 Volltext | |
966 | e | |u https://www.degruyter.com/document/doi/10.1051/978-2-7598-3103-6/html |l DE-20 |p ZDB-23-DMA |q UBW_Paketkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1051/978-2-7598-3103-6 |l DE-706 |p ZDB-23-DMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1051/978-2-7598-3103-6 |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1807954305557200896 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Song, Caiqin |
author_facet | Song, Caiqin |
author_role | aut |
author_sort | Song, Caiqin |
author_variant | c s cs |
building | Verbundindex |
bvnumber | BV049469089 |
classification_tum | MAT 000 |
collection | ZDB-23-DGG ZDB-23-DMA |
ctrlnum | (ZDB-23-DGG)9782759831036 (OCoLC)1414551116 (DE-599)BVBBV049469089 |
discipline | Mathematik |
doi_str_mv | 10.1051/978-2-7598-3103-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV049469089</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240820</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">231215s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9782759831036</subfield><subfield code="9">978-2-7598-3103-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/978-2-7598-3103-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9782759831036</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1414551116</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049469089</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Song, Caiqin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solutions to linear matrix equations and their applications</subfield><subfield code="c">Caiqin Song</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Les Ulis</subfield><subfield code="b">EDP Sciences</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Les Ulis</subfield><subfield code="b">Science Press</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VI, 184 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book addresses both the basic and applied aspects of the finite iterative algorithm, CGLS iterative algorithm, and explicit algorithm to some linear matrix equations. The author presents the latest results in three parts: (1) We consider the finite iterative algorithm to the coupled transpose matrix equations and the coupled operator matrix equations with sub-matrix constrained. These two finite iterative algorithms are closely related and progressive. (2) We present MCGLS iterative algorithm for studying least squares problems to the generalized Sylvester-conjugate matrix equation, the generalized Sylvester-conjugate transpose matrix equation, and the coupled linear operator systems, respectively. (3) Compared with the previous two parts, we consider here the explicit solution to some linear matrix equations, which are the nonhomogeneous Yakubovich matrix equation, the nonhomogeneous Yakubovich transpose matrix equation, and the generalized Sylvester matrix equation, respectively. This book is intended for students, researchers, and professionals in the field of numerical algebra, linear matrix equations, nonlinear matrix equations, and control theory</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Matrices</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-2-7598-3102-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1051/978-2-7598-3103-6</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DMA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034814718</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1051/978-2-7598-3103-6</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1051/978-2-7598-3103-6</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1051/978-2-7598-3103-6</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1051/978-2-7598-3103-6</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1051/978-2-7598-3103-6</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1051/978-2-7598-3103-6</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1051/978-2-7598-3103-6</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">TUM_Paketkauf_2023</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://www.degruyter.com/document/doi/10.1051/978-2-7598-3103-6/html</subfield><subfield code="l">DE-20</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">UBW_Paketkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1051/978-2-7598-3103-6</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1051/978-2-7598-3103-6</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049469089 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:16:17Z |
indexdate | 2024-08-21T00:19:45Z |
institution | BVB |
isbn | 9782759831036 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034814718 |
oclc_num | 1414551116 |
open_access_boolean | |
owner | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 DE-91 DE-BY-TUM DE-11 DE-20 DE-706 |
owner_facet | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 DE-91 DE-BY-TUM DE-11 DE-20 DE-706 |
physical | 1 Online-Ressource (VI, 184 Seiten) |
psigel | ZDB-23-DGG ZDB-23-DMA ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DMA TUM_Paketkauf_2023 ZDB-23-DMA UBW_Paketkauf ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | EDP Sciences Science Press |
record_format | marc |
spelling | Song, Caiqin Verfasser aut Solutions to linear matrix equations and their applications Caiqin Song Les Ulis EDP Sciences [2023] Les Ulis Science Press [2023] © 2023 1 Online-Ressource (VI, 184 Seiten) txt rdacontent c rdamedia cr rdacarrier This book addresses both the basic and applied aspects of the finite iterative algorithm, CGLS iterative algorithm, and explicit algorithm to some linear matrix equations. The author presents the latest results in three parts: (1) We consider the finite iterative algorithm to the coupled transpose matrix equations and the coupled operator matrix equations with sub-matrix constrained. These two finite iterative algorithms are closely related and progressive. (2) We present MCGLS iterative algorithm for studying least squares problems to the generalized Sylvester-conjugate matrix equation, the generalized Sylvester-conjugate transpose matrix equation, and the coupled linear operator systems, respectively. (3) Compared with the previous two parts, we consider here the explicit solution to some linear matrix equations, which are the nonhomogeneous Yakubovich matrix equation, the nonhomogeneous Yakubovich transpose matrix equation, and the generalized Sylvester matrix equation, respectively. This book is intended for students, researchers, and professionals in the field of numerical algebra, linear matrix equations, nonlinear matrix equations, and control theory MATHEMATICS / Matrices bisacsh Erscheint auch als Druck-Ausgabe 978-2-7598-3102-9 https://doi.org/10.1051/978-2-7598-3103-6 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Song, Caiqin Solutions to linear matrix equations and their applications MATHEMATICS / Matrices bisacsh |
title | Solutions to linear matrix equations and their applications |
title_auth | Solutions to linear matrix equations and their applications |
title_exact_search | Solutions to linear matrix equations and their applications |
title_exact_search_txtP | Solutions to Linear Matrix Equations and Their Applications |
title_full | Solutions to linear matrix equations and their applications Caiqin Song |
title_fullStr | Solutions to linear matrix equations and their applications Caiqin Song |
title_full_unstemmed | Solutions to linear matrix equations and their applications Caiqin Song |
title_short | Solutions to linear matrix equations and their applications |
title_sort | solutions to linear matrix equations and their applications |
topic | MATHEMATICS / Matrices bisacsh |
topic_facet | MATHEMATICS / Matrices |
url | https://doi.org/10.1051/978-2-7598-3103-6 |
work_keys_str_mv | AT songcaiqin solutionstolinearmatrixequationsandtheirapplications |