Training data for machine learning: human supervision from annotation to data science
Your training data has as much to do with the success of your data project as the algorithms themselves--most failures in deep learning systems relate to training data. But while training data is the foundation for successful machine learning, there are few comprehensive resources to help you ace th...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Bejing ; Boston ; Farnham ; Sebastopol ; Tokyo
O'Reilly
2023
|
Ausgabe: | First edition |
Schlagworte: | |
Zusammenfassung: | Your training data has as much to do with the success of your data project as the algorithms themselves--most failures in deep learning systems relate to training data. But while training data is the foundation for successful machine learning, there are few comprehensive resources to help you ace the process. This hands-on guide explains how to work with and scale training data. You'll gain a solid understanding of the concepts, tools, and processes needed to: Design, deploy, and ship training data for production-grade deep learning applications Integrate with a growing ecosystem of tools Recognize and correct new training data-based failure modes Improve existing system performance and avoid development risks Confidently use automation and acceleration approaches to more effectively create training data Avoid data loss by structuring metadata around created datasets Clearly explain training data concepts to subject matter experts and other shareholders Successfully maintain, operate, and improve your system |
Beschreibung: | xxii, 306 Seiten Illustrationen |
ISBN: | 9781492094524 |
Internformat
MARC
LEADER | 00000nam a22000001c 4500 | ||
---|---|---|---|
001 | BV049460954 | ||
003 | DE-604 | ||
005 | 20240930 | ||
007 | t | ||
008 | 231211s2023 a||| |||| 00||| eng d | ||
020 | |a 9781492094524 |c pbk |9 978-1-492-09452-4 | ||
035 | |a (OCoLC)1424570205 | ||
035 | |a (DE-599)BVBBV049460954 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-739 |a DE-29T |a DE-634 | ||
082 | 0 | |a 658.4/03 |2 23 | |
084 | |a QH 500 |0 (DE-625)141607: |2 rvk | ||
100 | 1 | |a Sarkis, Anthony |e Verfasser |4 aut | |
245 | 1 | 0 | |a Training data for machine learning |b human supervision from annotation to data science |c Anthony Sarkis |
250 | |a First edition | ||
264 | 1 | |a Bejing ; Boston ; Farnham ; Sebastopol ; Tokyo |b O'Reilly |c 2023 | |
300 | |a xxii, 306 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | 3 | |a Your training data has as much to do with the success of your data project as the algorithms themselves--most failures in deep learning systems relate to training data. But while training data is the foundation for successful machine learning, there are few comprehensive resources to help you ace the process. This hands-on guide explains how to work with and scale training data. You'll gain a solid understanding of the concepts, tools, and processes needed to: Design, deploy, and ship training data for production-grade deep learning applications Integrate with a growing ecosystem of tools Recognize and correct new training data-based failure modes Improve existing system performance and avoid development risks Confidently use automation and acceleration approaches to more effectively create training data Avoid data loss by structuring metadata around created datasets Clearly explain training data concepts to subject matter experts and other shareholders Successfully maintain, operate, and improve your system | |
650 | 0 | 7 | |a Trainingsdaten |0 (DE-588)1294096656 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
653 | 0 | |a Database management | |
653 | 0 | |a Machine learning | |
653 | 0 | |a Management information systems | |
653 | 0 | |a Business / Databases / Management | |
653 | 0 | |a Information storage and retrieval systems / Reliability | |
653 | 0 | |a Electronic books ; local | |
653 | 0 | |a Electronic books | |
653 | 0 | |a Bases de données ; Gestion | |
653 | 0 | |a Apprentissage automatique | |
653 | 0 | |a Systèmes d'information de gestion | |
653 | 0 | |a Affaires ; Bases de données ; Gestion | |
653 | 0 | |a Systèmes d'information ; Fiabilité | |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Trainingsdaten |0 (DE-588)1294096656 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4920-9447-0 |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-034806682 |
Datensatz im Suchindex
_version_ | 1811607185898078208 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Sarkis, Anthony |
author_facet | Sarkis, Anthony |
author_role | aut |
author_sort | Sarkis, Anthony |
author_variant | a s as |
building | Verbundindex |
bvnumber | BV049460954 |
classification_rvk | QH 500 |
ctrlnum | (OCoLC)1424570205 (DE-599)BVBBV049460954 |
dewey-full | 658.4/03 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.4/03 |
dewey-search | 658.4/03 |
dewey-sort | 3658.4 13 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
edition | First edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000001c 4500</leader><controlfield tag="001">BV049460954</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240930</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">231211s2023 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781492094524</subfield><subfield code="c">pbk</subfield><subfield code="9">978-1-492-09452-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1424570205</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049460954</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.4/03</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 500</subfield><subfield code="0">(DE-625)141607:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sarkis, Anthony</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Training data for machine learning</subfield><subfield code="b">human supervision from annotation to data science</subfield><subfield code="c">Anthony Sarkis</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Bejing ; Boston ; Farnham ; Sebastopol ; Tokyo</subfield><subfield code="b">O'Reilly</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxii, 306 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Your training data has as much to do with the success of your data project as the algorithms themselves--most failures in deep learning systems relate to training data. But while training data is the foundation for successful machine learning, there are few comprehensive resources to help you ace the process. This hands-on guide explains how to work with and scale training data. You'll gain a solid understanding of the concepts, tools, and processes needed to: Design, deploy, and ship training data for production-grade deep learning applications Integrate with a growing ecosystem of tools Recognize and correct new training data-based failure modes Improve existing system performance and avoid development risks Confidently use automation and acceleration approaches to more effectively create training data Avoid data loss by structuring metadata around created datasets Clearly explain training data concepts to subject matter experts and other shareholders Successfully maintain, operate, and improve your system</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Trainingsdaten</subfield><subfield code="0">(DE-588)1294096656</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Database management</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Management information systems</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Business / Databases / Management</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Information storage and retrieval systems / Reliability</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic books ; local</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic books</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Bases de données ; Gestion</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Systèmes d'information de gestion</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Affaires ; Bases de données ; Gestion</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Systèmes d'information ; Fiabilité</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Trainingsdaten</subfield><subfield code="0">(DE-588)1294096656</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4920-9447-0</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034806682</subfield></datafield></record></collection> |
id | DE-604.BV049460954 |
illustrated | Illustrated |
index_date | 2024-07-03T23:14:48Z |
indexdate | 2024-09-30T08:00:44Z |
institution | BVB |
isbn | 9781492094524 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034806682 |
oclc_num | 1424570205 |
open_access_boolean | |
owner | DE-739 DE-29T DE-634 |
owner_facet | DE-739 DE-29T DE-634 |
physical | xxii, 306 Seiten Illustrationen |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | O'Reilly |
record_format | marc |
spelling | Sarkis, Anthony Verfasser aut Training data for machine learning human supervision from annotation to data science Anthony Sarkis First edition Bejing ; Boston ; Farnham ; Sebastopol ; Tokyo O'Reilly 2023 xxii, 306 Seiten Illustrationen txt rdacontent n rdamedia nc rdacarrier Your training data has as much to do with the success of your data project as the algorithms themselves--most failures in deep learning systems relate to training data. But while training data is the foundation for successful machine learning, there are few comprehensive resources to help you ace the process. This hands-on guide explains how to work with and scale training data. You'll gain a solid understanding of the concepts, tools, and processes needed to: Design, deploy, and ship training data for production-grade deep learning applications Integrate with a growing ecosystem of tools Recognize and correct new training data-based failure modes Improve existing system performance and avoid development risks Confidently use automation and acceleration approaches to more effectively create training data Avoid data loss by structuring metadata around created datasets Clearly explain training data concepts to subject matter experts and other shareholders Successfully maintain, operate, and improve your system Trainingsdaten (DE-588)1294096656 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Database management Machine learning Management information systems Business / Databases / Management Information storage and retrieval systems / Reliability Electronic books ; local Electronic books Bases de données ; Gestion Apprentissage automatique Systèmes d'information de gestion Affaires ; Bases de données ; Gestion Systèmes d'information ; Fiabilité Maschinelles Lernen (DE-588)4193754-5 s Trainingsdaten (DE-588)1294096656 s DE-604 Erscheint auch als Online-Ausgabe 978-1-4920-9447-0 |
spellingShingle | Sarkis, Anthony Training data for machine learning human supervision from annotation to data science Trainingsdaten (DE-588)1294096656 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)1294096656 (DE-588)4193754-5 |
title | Training data for machine learning human supervision from annotation to data science |
title_auth | Training data for machine learning human supervision from annotation to data science |
title_exact_search | Training data for machine learning human supervision from annotation to data science |
title_exact_search_txtP | Training data for machine learning human supervision from annotation to data science |
title_full | Training data for machine learning human supervision from annotation to data science Anthony Sarkis |
title_fullStr | Training data for machine learning human supervision from annotation to data science Anthony Sarkis |
title_full_unstemmed | Training data for machine learning human supervision from annotation to data science Anthony Sarkis |
title_short | Training data for machine learning |
title_sort | training data for machine learning human supervision from annotation to data science |
title_sub | human supervision from annotation to data science |
topic | Trainingsdaten (DE-588)1294096656 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Trainingsdaten Maschinelles Lernen |
work_keys_str_mv | AT sarkisanthony trainingdataformachinelearninghumansupervisionfromannotationtodatascience |