Biofuel technologies for a sustainable future: India and beyond
This book examines the key aspects that will define future sustainable energy systems: biofuels, green nanomaterials and the production of bioethanol and bio-hydrogen from bio-waste. Bio-based fuels are the future energy carriers for internal combustion engines as they have lower environmental impac...
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Gistrup, Denmark
River Publishers
[2022]
|
Schriftenreihe: | River Publishers series in energy sustainability and efficiency
|
Schlagworte: | |
Online-Zugang: | FHI01 Volltext Taylor & Francis EBSCOhost |
Zusammenfassung: | This book examines the key aspects that will define future sustainable energy systems: biofuels, green nanomaterials and the production of bioethanol and bio-hydrogen from bio-waste. Bio-based fuels are the future energy carriers for internal combustion engines as they have lower environmental impact and higher efficiency. The book clearly illustrates the requirement for a unified engineering approach based on solid mathematical and engineering principles. Aside from the ecological advantages, support for sustainable energy can help the socioeconomic situation of developing countries by providing a consistent supply of new energy along with the generation of new job opportunities. The sustainable energy applications and existing contextual investigations provide useful guidance for the broad comprehension of the significance of sustainable energy. Technical topics discussed in the book include: • Thermochemical Conversion process; • Catalytic conversion process; • Rankine cycle; • Nanomaterials; |
Beschreibung: | 1 Online-Ressource (xix, 228 Seiten) |
ISBN: | 9788770226332 8770226334 9781003338321 1003338321 1000795209 9781000792614 1000792617 9781000795202 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV049458679 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 231208s2022 |||| o||u| ||||||eng d | ||
020 | |a 9788770226332 |9 9788770226332 | ||
020 | |a 8770226334 |9 8770226334 | ||
020 | |a 9781003338321 |9 9781003338321 | ||
020 | |a 1003338321 |9 1003338321 | ||
020 | |a 1000795209 |9 1000795209 | ||
020 | |a 9781000792614 |9 9781000792614 | ||
020 | |a 1000792617 |9 1000792617 | ||
020 | |a 9781000795202 |9 9781000795202 | ||
024 | 7 | |a 10.1201/9781003338321 |2 doi | |
035 | |a (OCoLC)1414563736 | ||
035 | |a (DE-599)BVBBV049458679 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-573 | ||
245 | 1 | 0 | |a Biofuel technologies for a sustainable future |b India and beyond |c editors, Yashvir Singh, Prateek Negi, Wei Hsin Chen |
264 | 1 | |a Gistrup, Denmark |b River Publishers |c [2022] | |
300 | |a 1 Online-Ressource (xix, 228 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a River Publishers series in energy sustainability and efficiency | |
505 | 8 | |a Preface xi List of Figures xiii List of Tables xv List of Contributors xvii List of Abbreviations xix 1 Current Scenario of Renewable Energy in India and Its Possibilities in the Future 1 1.1 Introduction 2 1.2 Renewable Energy 3 1.2.1 Biomass 3 1.2.2 Biofuels 6 1.2.3 Small Hydro 7 1.2.4 Solar Energy 8 1.2.4.1 Grid-connected 9 1.2.4.2 Off-grid solar PV program 10 1.2.5 Wind Energy 12 1.2.6 Waste to Energy 14 1.2.7 Geothermal Energy 16 1.3 Future of Renewable Energy in India 18 1.4 Policy Gaps and Opportunities 19 1.5 Conclusion 22 References 22 2 Application of Green Nanomaterials for Sustainable Energy Systems: A Review of the Current Status 25 2.1 Introduction 26 2.2 Use of Nanotechnology for Improved Energy Efficiency 27 2.3 Nanomaterials and Sustainability Issues 30 2.4 Green Nanomaterials Enhancing the Sustainability in Energy Applications 32 2.4.1 Green Reagents Used During Nanoparticle Synthesis 33 2.4.2 Green Processes Involved in Nanoparticle Synthesis 36 2.4.3 Biomass | |
505 | 8 | |a Based Green Nanotechnology in Energy Devices 38 2.5 Conclusion 41 References 42 3 Production of Energy from Biowaste: An Overview of the Underlying Biological Technologies 51 3.1 Introduction 52 3.2 Current Technologies for Energy Generation from Biowaste 53 3.3 Anaerobic Digestion for Generation of Biogas 55 3.4 Microbial Fermentation for Bioethanol Generation 58 3.5 Microbial Fermentation for Bio-Hydrogen Generation 62 3.6 Transesterification for Biodiesel Generation 64 3.7 Discussion on Potential Challenges and Solutions for Biofuel Generation 65 3.8 Conclusion 67 References 68 4 Coconut Shell-Based Activated Carbon Supported Metal Oxides in Catalytic Cracking Activity 79 4.1 Introduction 80 4.2 Experimental Procedures 81 4.2.1 Material 81 4.2.2 Catalyst Preparation 81 4.2.3 Catalytic Cracking of Waste Cooking Oil 82 4.2.4 Product Analysis 83 4.3 Results and Discussion 84 4.3.1 Properties of Waste Cooking Oil 84 4.3.2 Catalytic Cracking of Waste Cooking Oil 84 4.3.2.1 Activated | |
505 | 8 | |a carbon-based catalysts 84 4.3.2.2 Activated carbon supported metal oxides 89 4.3.3 Characterization of Activated Carbon Supported Metal Catalysts 92 4.3.3.1 X-ray diffraction (XRD) analysis 92 4.3.3.2 Scanning electron microscopy (SEM) 95 4.3.3.3 Temperature programmed desorption (TPD) 97 4.3.3.4 Catalyst stability test 98 4.4 Conclusion 98 References 99 5 Biofuels - Are they a Sustainable Alternative? 103 5.1 Introduction 104 5.2 Abstraction of Biofuels from Food 104 5.2.1 Water Resources 105 5.2.1.1 Availability of water 105 5.2.1.2 Stored water assets 106 5.3 Water Usage 107 5.3.1 Usage of Water in the Growing Crop 107 5.4 Biofuels and their Energy Content [31] 108 5.5 Is Biomass is a form of Solar Energy [31] 113 5.6 Conclusion 114 References 115 6 Current Research Trends on the Utilization of Mono and Hybrid Nano-Fluids for Solar Energy Applications 119 6.1 Introduction 120 6.2 Nano-Fluids as Smart Fluids 121 6.2.1 Hybrid Nano-Fluids 122 6.3 Utilization of Mono/Hybrid Nano-Fluids | |
505 | 8 | |a in Solar Energy 123 6.3.1 Solar Collectors (SCs) 123 6.3.2 Photovoltaic Thermal (PV/T) System 130 6.3.3 Solar Desalination 131 6.4 Challenges with Nano-Fluid-Based Solar Technologies 134 6.5 Conclusions and Future Outlook 136 References 137 7 Modification and Application of Vegetable Oils for Biofuels 147 7.1 Introduction 147 7.2 History of Vegetable Oil as a Fuel 148 7.3 Transesterification of Vegetable Oil 150 7.4 Biodiesel Feedstock 151 7.4.1 Palm Oil 152 7.4.2 Sunflower Oil 153 7.4.3 Soybean Oil 154 7.4.4 Rapeseed Oil/Canola Oil 154 7.4.5 Rice Bran Oil 155 7.4.6 Jatropha 156 7.4.7 Used Cooking Oil 157 7.5 Biodiesel 158 7.6 The Current Senior of Biodiesel Derive from Vegetable Oil 159 7.7 Conclusion 160 References 160 8 A Green Automotive Industry for a Sustainable Future 167 8.1 Introduction 168 8.2 Scope of Development in Conventional Internal Combustion (IC) Engine 169 8.2.1 Possibility of Improvement in Short Term 170 8.2.1.1 Improvement in engine construction 170 8.2.1.2 | |
505 | 8 | |a Exhaust treatment systems 171 8.2.1.3 Changes in fuel for the IC engines 172 8.2.2 Possibility of Improvement in Long Term 172 8.2.2.1 Gasoline compression ignition (GCI) 172 8.2.2.2 Reactivity controlled compression ignition (RCCI) system 173 8.2.2.3 Octane on demand (OOD) 173 8.2.2.4 Opposed piston engines 174 8.3 Green Engine Technology 174 8.3.1 Technical features of green engine 174 8.3.2 Working of Green Engine 175 8.4 Hybrid Vehicles (HVs) 178 8.4.1 The Definition of Hybrid Vehicles (HVs) 178 8.4.2 Types of Hybrid Vehicles 179 8.4.2.1 Hybrid electric vehicles (HEVs) 179 8.4.2.2 Hybrid solar vehicle (HSVs) 181 8.4.2.3 Plug-in-hybrid electric vehicle (PHEVs) 182 8.4.3 Need HVs to Replace Conventional ICs and EVs-Why & Why Not?? 183 8.5 Hydrogen Fuel IC Engines (H2-ICEs) 184 8.5.1 Fundamental of H2-ICEs 184 8.5.2 Types of Advanced H2-ICEs 185 8.5.2.1 Pressure Based H2ICE 185 8.5.2.2 Liquid-hydrogen-fueled internal combustion engine (l-H2-ICEs) 186 8.5.2.3 Direct-injection | |
505 | 8 | |a hydrogen-fueled internal combustion engine (DI-H2ICE) 186 8.5.2.4 H2-ICE-electric hybrid 187 8.6 Conclusion 188 References 189 9 Thermochemical Conversions of Contaminated Biomass for Sustainable Phytoremediation 193 9.1 Introduction 194 9.2 Biomass Fuels Contaminated with Heavy Metals 195 9.3 Combustion 196 9.3.1 Fundamentals of Solid Biomass Combustion 196 9.3.2 Fluidized Bed Combustion for Solid Biomass Fuels 200 9.3.3 Ash Formation and Fate of Heavy Metals During Combustion of Solid Fuels 201 9.3.4 Combustion Relevant for phytoremediation Plant Biomass Contaminated with Heavy Metals 204 9.4 Gasification 206 9.4.1 Gasification Fundamentals 206 9.4.2 Gasification Relevant for Phytoremediation Plant Biomass Contaminated with Heavy Metals 208 9.5 Pyrolysis 208 9.5.1 Pyrolysis Fundamentals 208 9.5.2 Pyrolysis Relevant for Phytoremediation Plant Biomass Contaminated with Heavy Metals 210 9.6 Hydrothermal Processing 211 9.6.1 Fundamentals of Hydrothermal Treatments of Biomass 211 9.6.2 | |
505 | 8 | |a Hydrothermal Treatments Relevant for Phytoremediation Plant Biomass Contaminated with Heavy Metals 213 9.7 Conclusion and Perspective 215 References 216 Index 225 About the Editors 227 | |
520 | 3 | |a This book examines the key aspects that will define future sustainable energy systems: biofuels, green nanomaterials and the production of bioethanol and bio-hydrogen from bio-waste. Bio-based fuels are the future energy carriers for internal combustion engines as they have lower environmental impact and higher efficiency. The book clearly illustrates the requirement for a unified engineering approach based on solid mathematical and engineering principles. Aside from the ecological advantages, support for sustainable energy can help the socioeconomic situation of developing countries by providing a consistent supply of new energy along with the generation of new job opportunities. The sustainable energy applications and existing contextual investigations provide useful guidance for the broad comprehension of the significance of sustainable energy. Technical topics discussed in the book include: • Thermochemical Conversion process; • Catalytic conversion process; • Rankine cycle; • Nanomaterials; | |
650 | 0 | 7 | |a Biokraftstoff |0 (DE-588)4145658-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nachhaltigkeit |0 (DE-588)4326464-5 |2 gnd |9 rswk-swf |
653 | 0 | |a Renewable energy sources | |
653 | 0 | |a Clean energy | |
653 | 0 | |a Energy transition | |
653 | 0 | |a Énergies renouvelables | |
653 | 0 | |a Énergies propres | |
653 | 0 | |a Transition énergétique | |
653 | 0 | |a NATURE / Environmental Conservation & Protection | |
653 | 0 | |a SCIENCE / Energy | |
653 | 0 | |a SCIENCE / Environmental Science | |
653 | 0 | |a Clean energy | |
653 | 0 | |a Energy transition | |
653 | 0 | |a Renewable energy sources | |
689 | 0 | 0 | |a Biokraftstoff |0 (DE-588)4145658-0 |D s |
689 | 0 | 1 | |a Nachhaltigkeit |0 (DE-588)4326464-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Singh, Yashvir |e Sonstige |0 (DE-588)1291208763 |4 oth | |
700 | 1 | |a Negi, Prateek |e Sonstige |4 oth | |
700 | 1 | |a Chen, Weixin |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9788770226349 |
856 | 4 | 0 | |u https://ieeexplore.ieee.org/book/9967440 |x Aggregator |z URL des Erstveröffentlichers |3 Volltext |
856 | 4 | 0 | |u https://www.taylorfrancis.com/books/9781003338321 |3 Taylor & Francis |
856 | 4 | 0 | |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=3619641 |3 EBSCOhost |
912 | |a ZDB-37-RPEB | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-034804443 | ||
966 | e | |u https://ieeexplore.ieee.org/book/9967440 |l FHI01 |p ZDB-37-RPEB |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804186229498970112 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author_GND | (DE-588)1291208763 |
building | Verbundindex |
bvnumber | BV049458679 |
collection | ZDB-37-RPEB |
contents | Preface xi List of Figures xiii List of Tables xv List of Contributors xvii List of Abbreviations xix 1 Current Scenario of Renewable Energy in India and Its Possibilities in the Future 1 1.1 Introduction 2 1.2 Renewable Energy 3 1.2.1 Biomass 3 1.2.2 Biofuels 6 1.2.3 Small Hydro 7 1.2.4 Solar Energy 8 1.2.4.1 Grid-connected 9 1.2.4.2 Off-grid solar PV program 10 1.2.5 Wind Energy 12 1.2.6 Waste to Energy 14 1.2.7 Geothermal Energy 16 1.3 Future of Renewable Energy in India 18 1.4 Policy Gaps and Opportunities 19 1.5 Conclusion 22 References 22 2 Application of Green Nanomaterials for Sustainable Energy Systems: A Review of the Current Status 25 2.1 Introduction 26 2.2 Use of Nanotechnology for Improved Energy Efficiency 27 2.3 Nanomaterials and Sustainability Issues 30 2.4 Green Nanomaterials Enhancing the Sustainability in Energy Applications 32 2.4.1 Green Reagents Used During Nanoparticle Synthesis 33 2.4.2 Green Processes Involved in Nanoparticle Synthesis 36 2.4.3 Biomass Based Green Nanotechnology in Energy Devices 38 2.5 Conclusion 41 References 42 3 Production of Energy from Biowaste: An Overview of the Underlying Biological Technologies 51 3.1 Introduction 52 3.2 Current Technologies for Energy Generation from Biowaste 53 3.3 Anaerobic Digestion for Generation of Biogas 55 3.4 Microbial Fermentation for Bioethanol Generation 58 3.5 Microbial Fermentation for Bio-Hydrogen Generation 62 3.6 Transesterification for Biodiesel Generation 64 3.7 Discussion on Potential Challenges and Solutions for Biofuel Generation 65 3.8 Conclusion 67 References 68 4 Coconut Shell-Based Activated Carbon Supported Metal Oxides in Catalytic Cracking Activity 79 4.1 Introduction 80 4.2 Experimental Procedures 81 4.2.1 Material 81 4.2.2 Catalyst Preparation 81 4.2.3 Catalytic Cracking of Waste Cooking Oil 82 4.2.4 Product Analysis 83 4.3 Results and Discussion 84 4.3.1 Properties of Waste Cooking Oil 84 4.3.2 Catalytic Cracking of Waste Cooking Oil 84 4.3.2.1 Activated carbon-based catalysts 84 4.3.2.2 Activated carbon supported metal oxides 89 4.3.3 Characterization of Activated Carbon Supported Metal Catalysts 92 4.3.3.1 X-ray diffraction (XRD) analysis 92 4.3.3.2 Scanning electron microscopy (SEM) 95 4.3.3.3 Temperature programmed desorption (TPD) 97 4.3.3.4 Catalyst stability test 98 4.4 Conclusion 98 References 99 5 Biofuels - Are they a Sustainable Alternative? 103 5.1 Introduction 104 5.2 Abstraction of Biofuels from Food 104 5.2.1 Water Resources 105 5.2.1.1 Availability of water 105 5.2.1.2 Stored water assets 106 5.3 Water Usage 107 5.3.1 Usage of Water in the Growing Crop 107 5.4 Biofuels and their Energy Content [31] 108 5.5 Is Biomass is a form of Solar Energy [31] 113 5.6 Conclusion 114 References 115 6 Current Research Trends on the Utilization of Mono and Hybrid Nano-Fluids for Solar Energy Applications 119 6.1 Introduction 120 6.2 Nano-Fluids as Smart Fluids 121 6.2.1 Hybrid Nano-Fluids 122 6.3 Utilization of Mono/Hybrid Nano-Fluids in Solar Energy 123 6.3.1 Solar Collectors (SCs) 123 6.3.2 Photovoltaic Thermal (PV/T) System 130 6.3.3 Solar Desalination 131 6.4 Challenges with Nano-Fluid-Based Solar Technologies 134 6.5 Conclusions and Future Outlook 136 References 137 7 Modification and Application of Vegetable Oils for Biofuels 147 7.1 Introduction 147 7.2 History of Vegetable Oil as a Fuel 148 7.3 Transesterification of Vegetable Oil 150 7.4 Biodiesel Feedstock 151 7.4.1 Palm Oil 152 7.4.2 Sunflower Oil 153 7.4.3 Soybean Oil 154 7.4.4 Rapeseed Oil/Canola Oil 154 7.4.5 Rice Bran Oil 155 7.4.6 Jatropha 156 7.4.7 Used Cooking Oil 157 7.5 Biodiesel 158 7.6 The Current Senior of Biodiesel Derive from Vegetable Oil 159 7.7 Conclusion 160 References 160 8 A Green Automotive Industry for a Sustainable Future 167 8.1 Introduction 168 8.2 Scope of Development in Conventional Internal Combustion (IC) Engine 169 8.2.1 Possibility of Improvement in Short Term 170 8.2.1.1 Improvement in engine construction 170 8.2.1.2 Exhaust treatment systems 171 8.2.1.3 Changes in fuel for the IC engines 172 8.2.2 Possibility of Improvement in Long Term 172 8.2.2.1 Gasoline compression ignition (GCI) 172 8.2.2.2 Reactivity controlled compression ignition (RCCI) system 173 8.2.2.3 Octane on demand (OOD) 173 8.2.2.4 Opposed piston engines 174 8.3 Green Engine Technology 174 8.3.1 Technical features of green engine 174 8.3.2 Working of Green Engine 175 8.4 Hybrid Vehicles (HVs) 178 8.4.1 The Definition of Hybrid Vehicles (HVs) 178 8.4.2 Types of Hybrid Vehicles 179 8.4.2.1 Hybrid electric vehicles (HEVs) 179 8.4.2.2 Hybrid solar vehicle (HSVs) 181 8.4.2.3 Plug-in-hybrid electric vehicle (PHEVs) 182 8.4.3 Need HVs to Replace Conventional ICs and EVs-Why & Why Not?? 183 8.5 Hydrogen Fuel IC Engines (H2-ICEs) 184 8.5.1 Fundamental of H2-ICEs 184 8.5.2 Types of Advanced H2-ICEs 185 8.5.2.1 Pressure Based H2ICE 185 8.5.2.2 Liquid-hydrogen-fueled internal combustion engine (l-H2-ICEs) 186 8.5.2.3 Direct-injection hydrogen-fueled internal combustion engine (DI-H2ICE) 186 8.5.2.4 H2-ICE-electric hybrid 187 8.6 Conclusion 188 References 189 9 Thermochemical Conversions of Contaminated Biomass for Sustainable Phytoremediation 193 9.1 Introduction 194 9.2 Biomass Fuels Contaminated with Heavy Metals 195 9.3 Combustion 196 9.3.1 Fundamentals of Solid Biomass Combustion 196 9.3.2 Fluidized Bed Combustion for Solid Biomass Fuels 200 9.3.3 Ash Formation and Fate of Heavy Metals During Combustion of Solid Fuels 201 9.3.4 Combustion Relevant for phytoremediation Plant Biomass Contaminated with Heavy Metals 204 9.4 Gasification 206 9.4.1 Gasification Fundamentals 206 9.4.2 Gasification Relevant for Phytoremediation Plant Biomass Contaminated with Heavy Metals 208 9.5 Pyrolysis 208 9.5.1 Pyrolysis Fundamentals 208 9.5.2 Pyrolysis Relevant for Phytoremediation Plant Biomass Contaminated with Heavy Metals 210 9.6 Hydrothermal Processing 211 9.6.1 Fundamentals of Hydrothermal Treatments of Biomass 211 9.6.2 Hydrothermal Treatments Relevant for Phytoremediation Plant Biomass Contaminated with Heavy Metals 213 9.7 Conclusion and Perspective 215 References 216 Index 225 About the Editors 227 |
ctrlnum | (OCoLC)1414563736 (DE-599)BVBBV049458679 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>09867nmm a2200757 c 4500</leader><controlfield tag="001">BV049458679</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">231208s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9788770226332</subfield><subfield code="9">9788770226332</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">8770226334</subfield><subfield code="9">8770226334</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781003338321</subfield><subfield code="9">9781003338321</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1003338321</subfield><subfield code="9">1003338321</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1000795209</subfield><subfield code="9">1000795209</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000792614</subfield><subfield code="9">9781000792614</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1000792617</subfield><subfield code="9">1000792617</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781000795202</subfield><subfield code="9">9781000795202</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1201/9781003338321</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1414563736</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049458679</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-573</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biofuel technologies for a sustainable future</subfield><subfield code="b">India and beyond</subfield><subfield code="c">editors, Yashvir Singh, Prateek Negi, Wei Hsin Chen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Gistrup, Denmark</subfield><subfield code="b">River Publishers</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xix, 228 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">River Publishers series in energy sustainability and efficiency</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Preface xi List of Figures xiii List of Tables xv List of Contributors xvii List of Abbreviations xix 1 Current Scenario of Renewable Energy in India and Its Possibilities in the Future 1 1.1 Introduction 2 1.2 Renewable Energy 3 1.2.1 Biomass 3 1.2.2 Biofuels 6 1.2.3 Small Hydro 7 1.2.4 Solar Energy 8 1.2.4.1 Grid-connected 9 1.2.4.2 Off-grid solar PV program 10 1.2.5 Wind Energy 12 1.2.6 Waste to Energy 14 1.2.7 Geothermal Energy 16 1.3 Future of Renewable Energy in India 18 1.4 Policy Gaps and Opportunities 19 1.5 Conclusion 22 References 22 2 Application of Green Nanomaterials for Sustainable Energy Systems: A Review of the Current Status 25 2.1 Introduction 26 2.2 Use of Nanotechnology for Improved Energy Efficiency 27 2.3 Nanomaterials and Sustainability Issues 30 2.4 Green Nanomaterials Enhancing the Sustainability in Energy Applications 32 2.4.1 Green Reagents Used During Nanoparticle Synthesis 33 2.4.2 Green Processes Involved in Nanoparticle Synthesis 36 2.4.3 Biomass </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Based Green Nanotechnology in Energy Devices 38 2.5 Conclusion 41 References 42 3 Production of Energy from Biowaste: An Overview of the Underlying Biological Technologies 51 3.1 Introduction 52 3.2 Current Technologies for Energy Generation from Biowaste 53 3.3 Anaerobic Digestion for Generation of Biogas 55 3.4 Microbial Fermentation for Bioethanol Generation 58 3.5 Microbial Fermentation for Bio-Hydrogen Generation 62 3.6 Transesterification for Biodiesel Generation 64 3.7 Discussion on Potential Challenges and Solutions for Biofuel Generation 65 3.8 Conclusion 67 References 68 4 Coconut Shell-Based Activated Carbon Supported Metal Oxides in Catalytic Cracking Activity 79 4.1 Introduction 80 4.2 Experimental Procedures 81 4.2.1 Material 81 4.2.2 Catalyst Preparation 81 4.2.3 Catalytic Cracking of Waste Cooking Oil 82 4.2.4 Product Analysis 83 4.3 Results and Discussion 84 4.3.1 Properties of Waste Cooking Oil 84 4.3.2 Catalytic Cracking of Waste Cooking Oil 84 4.3.2.1 Activated </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">carbon-based catalysts 84 4.3.2.2 Activated carbon supported metal oxides 89 4.3.3 Characterization of Activated Carbon Supported Metal Catalysts 92 4.3.3.1 X-ray diffraction (XRD) analysis 92 4.3.3.2 Scanning electron microscopy (SEM) 95 4.3.3.3 Temperature programmed desorption (TPD) 97 4.3.3.4 Catalyst stability test 98 4.4 Conclusion 98 References 99 5 Biofuels - Are they a Sustainable Alternative? 103 5.1 Introduction 104 5.2 Abstraction of Biofuels from Food 104 5.2.1 Water Resources 105 5.2.1.1 Availability of water 105 5.2.1.2 Stored water assets 106 5.3 Water Usage 107 5.3.1 Usage of Water in the Growing Crop 107 5.4 Biofuels and their Energy Content [31] 108 5.5 Is Biomass is a form of Solar Energy [31] 113 5.6 Conclusion 114 References 115 6 Current Research Trends on the Utilization of Mono and Hybrid Nano-Fluids for Solar Energy Applications 119 6.1 Introduction 120 6.2 Nano-Fluids as Smart Fluids 121 6.2.1 Hybrid Nano-Fluids 122 6.3 Utilization of Mono/Hybrid Nano-Fluids </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">in Solar Energy 123 6.3.1 Solar Collectors (SCs) 123 6.3.2 Photovoltaic Thermal (PV/T) System 130 6.3.3 Solar Desalination 131 6.4 Challenges with Nano-Fluid-Based Solar Technologies 134 6.5 Conclusions and Future Outlook 136 References 137 7 Modification and Application of Vegetable Oils for Biofuels 147 7.1 Introduction 147 7.2 History of Vegetable Oil as a Fuel 148 7.3 Transesterification of Vegetable Oil 150 7.4 Biodiesel Feedstock 151 7.4.1 Palm Oil 152 7.4.2 Sunflower Oil 153 7.4.3 Soybean Oil 154 7.4.4 Rapeseed Oil/Canola Oil 154 7.4.5 Rice Bran Oil 155 7.4.6 Jatropha 156 7.4.7 Used Cooking Oil 157 7.5 Biodiesel 158 7.6 The Current Senior of Biodiesel Derive from Vegetable Oil 159 7.7 Conclusion 160 References 160 8 A Green Automotive Industry for a Sustainable Future 167 8.1 Introduction 168 8.2 Scope of Development in Conventional Internal Combustion (IC) Engine 169 8.2.1 Possibility of Improvement in Short Term 170 8.2.1.1 Improvement in engine construction 170 8.2.1.2 </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Exhaust treatment systems 171 8.2.1.3 Changes in fuel for the IC engines 172 8.2.2 Possibility of Improvement in Long Term 172 8.2.2.1 Gasoline compression ignition (GCI) 172 8.2.2.2 Reactivity controlled compression ignition (RCCI) system 173 8.2.2.3 Octane on demand (OOD) 173 8.2.2.4 Opposed piston engines 174 8.3 Green Engine Technology 174 8.3.1 Technical features of green engine 174 8.3.2 Working of Green Engine 175 8.4 Hybrid Vehicles (HVs) 178 8.4.1 The Definition of Hybrid Vehicles (HVs) 178 8.4.2 Types of Hybrid Vehicles 179 8.4.2.1 Hybrid electric vehicles (HEVs) 179 8.4.2.2 Hybrid solar vehicle (HSVs) 181 8.4.2.3 Plug-in-hybrid electric vehicle (PHEVs) 182 8.4.3 Need HVs to Replace Conventional ICs and EVs-Why & Why Not?? 183 8.5 Hydrogen Fuel IC Engines (H2-ICEs) 184 8.5.1 Fundamental of H2-ICEs 184 8.5.2 Types of Advanced H2-ICEs 185 8.5.2.1 Pressure Based H2ICE 185 8.5.2.2 Liquid-hydrogen-fueled internal combustion engine (l-H2-ICEs) 186 8.5.2.3 Direct-injection </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">hydrogen-fueled internal combustion engine (DI-H2ICE) 186 8.5.2.4 H2-ICE-electric hybrid 187 8.6 Conclusion 188 References 189 9 Thermochemical Conversions of Contaminated Biomass for Sustainable Phytoremediation 193 9.1 Introduction 194 9.2 Biomass Fuels Contaminated with Heavy Metals 195 9.3 Combustion 196 9.3.1 Fundamentals of Solid Biomass Combustion 196 9.3.2 Fluidized Bed Combustion for Solid Biomass Fuels 200 9.3.3 Ash Formation and Fate of Heavy Metals During Combustion of Solid Fuels 201 9.3.4 Combustion Relevant for phytoremediation Plant Biomass Contaminated with Heavy Metals 204 9.4 Gasification 206 9.4.1 Gasification Fundamentals 206 9.4.2 Gasification Relevant for Phytoremediation Plant Biomass Contaminated with Heavy Metals 208 9.5 Pyrolysis 208 9.5.1 Pyrolysis Fundamentals 208 9.5.2 Pyrolysis Relevant for Phytoremediation Plant Biomass Contaminated with Heavy Metals 210 9.6 Hydrothermal Processing 211 9.6.1 Fundamentals of Hydrothermal Treatments of Biomass 211 9.6.2 </subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Hydrothermal Treatments Relevant for Phytoremediation Plant Biomass Contaminated with Heavy Metals 213 9.7 Conclusion and Perspective 215 References 216 Index 225 About the Editors 227</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This book examines the key aspects that will define future sustainable energy systems: biofuels, green nanomaterials and the production of bioethanol and bio-hydrogen from bio-waste. Bio-based fuels are the future energy carriers for internal combustion engines as they have lower environmental impact and higher efficiency. The book clearly illustrates the requirement for a unified engineering approach based on solid mathematical and engineering principles. Aside from the ecological advantages, support for sustainable energy can help the socioeconomic situation of developing countries by providing a consistent supply of new energy along with the generation of new job opportunities. The sustainable energy applications and existing contextual investigations provide useful guidance for the broad comprehension of the significance of sustainable energy. Technical topics discussed in the book include: • Thermochemical Conversion process; • Catalytic conversion process; • Rankine cycle; • Nanomaterials;</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biokraftstoff</subfield><subfield code="0">(DE-588)4145658-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nachhaltigkeit</subfield><subfield code="0">(DE-588)4326464-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Clean energy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Energy transition</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Énergies renouvelables</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Énergies propres</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Transition énergétique</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">NATURE / Environmental Conservation & Protection</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">SCIENCE / Energy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">SCIENCE / Environmental Science</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Clean energy</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Energy transition</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Renewable energy sources</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Biokraftstoff</subfield><subfield code="0">(DE-588)4145658-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nachhaltigkeit</subfield><subfield code="0">(DE-588)4326464-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, Yashvir</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1291208763</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Negi, Prateek</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Weixin</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9788770226349</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ieeexplore.ieee.org/book/9967440</subfield><subfield code="x">Aggregator</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://www.taylorfrancis.com/books/9781003338321</subfield><subfield code="3">Taylor & Francis</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=3619641</subfield><subfield code="3">EBSCOhost</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-37-RPEB</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034804443</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ieeexplore.ieee.org/book/9967440</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-37-RPEB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049458679 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:14:20Z |
indexdate | 2024-07-10T10:07:49Z |
institution | BVB |
isbn | 9788770226332 8770226334 9781003338321 1003338321 1000795209 9781000792614 1000792617 9781000795202 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034804443 |
oclc_num | 1414563736 |
open_access_boolean | |
owner | DE-573 |
owner_facet | DE-573 |
physical | 1 Online-Ressource (xix, 228 Seiten) |
psigel | ZDB-37-RPEB |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | River Publishers |
record_format | marc |
series2 | River Publishers series in energy sustainability and efficiency |
spelling | Biofuel technologies for a sustainable future India and beyond editors, Yashvir Singh, Prateek Negi, Wei Hsin Chen Gistrup, Denmark River Publishers [2022] 1 Online-Ressource (xix, 228 Seiten) txt rdacontent c rdamedia cr rdacarrier River Publishers series in energy sustainability and efficiency Preface xi List of Figures xiii List of Tables xv List of Contributors xvii List of Abbreviations xix 1 Current Scenario of Renewable Energy in India and Its Possibilities in the Future 1 1.1 Introduction 2 1.2 Renewable Energy 3 1.2.1 Biomass 3 1.2.2 Biofuels 6 1.2.3 Small Hydro 7 1.2.4 Solar Energy 8 1.2.4.1 Grid-connected 9 1.2.4.2 Off-grid solar PV program 10 1.2.5 Wind Energy 12 1.2.6 Waste to Energy 14 1.2.7 Geothermal Energy 16 1.3 Future of Renewable Energy in India 18 1.4 Policy Gaps and Opportunities 19 1.5 Conclusion 22 References 22 2 Application of Green Nanomaterials for Sustainable Energy Systems: A Review of the Current Status 25 2.1 Introduction 26 2.2 Use of Nanotechnology for Improved Energy Efficiency 27 2.3 Nanomaterials and Sustainability Issues 30 2.4 Green Nanomaterials Enhancing the Sustainability in Energy Applications 32 2.4.1 Green Reagents Used During Nanoparticle Synthesis 33 2.4.2 Green Processes Involved in Nanoparticle Synthesis 36 2.4.3 Biomass Based Green Nanotechnology in Energy Devices 38 2.5 Conclusion 41 References 42 3 Production of Energy from Biowaste: An Overview of the Underlying Biological Technologies 51 3.1 Introduction 52 3.2 Current Technologies for Energy Generation from Biowaste 53 3.3 Anaerobic Digestion for Generation of Biogas 55 3.4 Microbial Fermentation for Bioethanol Generation 58 3.5 Microbial Fermentation for Bio-Hydrogen Generation 62 3.6 Transesterification for Biodiesel Generation 64 3.7 Discussion on Potential Challenges and Solutions for Biofuel Generation 65 3.8 Conclusion 67 References 68 4 Coconut Shell-Based Activated Carbon Supported Metal Oxides in Catalytic Cracking Activity 79 4.1 Introduction 80 4.2 Experimental Procedures 81 4.2.1 Material 81 4.2.2 Catalyst Preparation 81 4.2.3 Catalytic Cracking of Waste Cooking Oil 82 4.2.4 Product Analysis 83 4.3 Results and Discussion 84 4.3.1 Properties of Waste Cooking Oil 84 4.3.2 Catalytic Cracking of Waste Cooking Oil 84 4.3.2.1 Activated carbon-based catalysts 84 4.3.2.2 Activated carbon supported metal oxides 89 4.3.3 Characterization of Activated Carbon Supported Metal Catalysts 92 4.3.3.1 X-ray diffraction (XRD) analysis 92 4.3.3.2 Scanning electron microscopy (SEM) 95 4.3.3.3 Temperature programmed desorption (TPD) 97 4.3.3.4 Catalyst stability test 98 4.4 Conclusion 98 References 99 5 Biofuels - Are they a Sustainable Alternative? 103 5.1 Introduction 104 5.2 Abstraction of Biofuels from Food 104 5.2.1 Water Resources 105 5.2.1.1 Availability of water 105 5.2.1.2 Stored water assets 106 5.3 Water Usage 107 5.3.1 Usage of Water in the Growing Crop 107 5.4 Biofuels and their Energy Content [31] 108 5.5 Is Biomass is a form of Solar Energy [31] 113 5.6 Conclusion 114 References 115 6 Current Research Trends on the Utilization of Mono and Hybrid Nano-Fluids for Solar Energy Applications 119 6.1 Introduction 120 6.2 Nano-Fluids as Smart Fluids 121 6.2.1 Hybrid Nano-Fluids 122 6.3 Utilization of Mono/Hybrid Nano-Fluids in Solar Energy 123 6.3.1 Solar Collectors (SCs) 123 6.3.2 Photovoltaic Thermal (PV/T) System 130 6.3.3 Solar Desalination 131 6.4 Challenges with Nano-Fluid-Based Solar Technologies 134 6.5 Conclusions and Future Outlook 136 References 137 7 Modification and Application of Vegetable Oils for Biofuels 147 7.1 Introduction 147 7.2 History of Vegetable Oil as a Fuel 148 7.3 Transesterification of Vegetable Oil 150 7.4 Biodiesel Feedstock 151 7.4.1 Palm Oil 152 7.4.2 Sunflower Oil 153 7.4.3 Soybean Oil 154 7.4.4 Rapeseed Oil/Canola Oil 154 7.4.5 Rice Bran Oil 155 7.4.6 Jatropha 156 7.4.7 Used Cooking Oil 157 7.5 Biodiesel 158 7.6 The Current Senior of Biodiesel Derive from Vegetable Oil 159 7.7 Conclusion 160 References 160 8 A Green Automotive Industry for a Sustainable Future 167 8.1 Introduction 168 8.2 Scope of Development in Conventional Internal Combustion (IC) Engine 169 8.2.1 Possibility of Improvement in Short Term 170 8.2.1.1 Improvement in engine construction 170 8.2.1.2 Exhaust treatment systems 171 8.2.1.3 Changes in fuel for the IC engines 172 8.2.2 Possibility of Improvement in Long Term 172 8.2.2.1 Gasoline compression ignition (GCI) 172 8.2.2.2 Reactivity controlled compression ignition (RCCI) system 173 8.2.2.3 Octane on demand (OOD) 173 8.2.2.4 Opposed piston engines 174 8.3 Green Engine Technology 174 8.3.1 Technical features of green engine 174 8.3.2 Working of Green Engine 175 8.4 Hybrid Vehicles (HVs) 178 8.4.1 The Definition of Hybrid Vehicles (HVs) 178 8.4.2 Types of Hybrid Vehicles 179 8.4.2.1 Hybrid electric vehicles (HEVs) 179 8.4.2.2 Hybrid solar vehicle (HSVs) 181 8.4.2.3 Plug-in-hybrid electric vehicle (PHEVs) 182 8.4.3 Need HVs to Replace Conventional ICs and EVs-Why & Why Not?? 183 8.5 Hydrogen Fuel IC Engines (H2-ICEs) 184 8.5.1 Fundamental of H2-ICEs 184 8.5.2 Types of Advanced H2-ICEs 185 8.5.2.1 Pressure Based H2ICE 185 8.5.2.2 Liquid-hydrogen-fueled internal combustion engine (l-H2-ICEs) 186 8.5.2.3 Direct-injection hydrogen-fueled internal combustion engine (DI-H2ICE) 186 8.5.2.4 H2-ICE-electric hybrid 187 8.6 Conclusion 188 References 189 9 Thermochemical Conversions of Contaminated Biomass for Sustainable Phytoremediation 193 9.1 Introduction 194 9.2 Biomass Fuels Contaminated with Heavy Metals 195 9.3 Combustion 196 9.3.1 Fundamentals of Solid Biomass Combustion 196 9.3.2 Fluidized Bed Combustion for Solid Biomass Fuels 200 9.3.3 Ash Formation and Fate of Heavy Metals During Combustion of Solid Fuels 201 9.3.4 Combustion Relevant for phytoremediation Plant Biomass Contaminated with Heavy Metals 204 9.4 Gasification 206 9.4.1 Gasification Fundamentals 206 9.4.2 Gasification Relevant for Phytoremediation Plant Biomass Contaminated with Heavy Metals 208 9.5 Pyrolysis 208 9.5.1 Pyrolysis Fundamentals 208 9.5.2 Pyrolysis Relevant for Phytoremediation Plant Biomass Contaminated with Heavy Metals 210 9.6 Hydrothermal Processing 211 9.6.1 Fundamentals of Hydrothermal Treatments of Biomass 211 9.6.2 Hydrothermal Treatments Relevant for Phytoremediation Plant Biomass Contaminated with Heavy Metals 213 9.7 Conclusion and Perspective 215 References 216 Index 225 About the Editors 227 This book examines the key aspects that will define future sustainable energy systems: biofuels, green nanomaterials and the production of bioethanol and bio-hydrogen from bio-waste. Bio-based fuels are the future energy carriers for internal combustion engines as they have lower environmental impact and higher efficiency. The book clearly illustrates the requirement for a unified engineering approach based on solid mathematical and engineering principles. Aside from the ecological advantages, support for sustainable energy can help the socioeconomic situation of developing countries by providing a consistent supply of new energy along with the generation of new job opportunities. The sustainable energy applications and existing contextual investigations provide useful guidance for the broad comprehension of the significance of sustainable energy. Technical topics discussed in the book include: • Thermochemical Conversion process; • Catalytic conversion process; • Rankine cycle; • Nanomaterials; Biokraftstoff (DE-588)4145658-0 gnd rswk-swf Nachhaltigkeit (DE-588)4326464-5 gnd rswk-swf Renewable energy sources Clean energy Energy transition Énergies renouvelables Énergies propres Transition énergétique NATURE / Environmental Conservation & Protection SCIENCE / Energy SCIENCE / Environmental Science Biokraftstoff (DE-588)4145658-0 s Nachhaltigkeit (DE-588)4326464-5 s DE-604 Singh, Yashvir Sonstige (DE-588)1291208763 oth Negi, Prateek Sonstige oth Chen, Weixin Sonstige oth Erscheint auch als Druck-Ausgabe 9788770226349 https://ieeexplore.ieee.org/book/9967440 Aggregator URL des Erstveröffentlichers Volltext https://www.taylorfrancis.com/books/9781003338321 Taylor & Francis https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=3619641 EBSCOhost |
spellingShingle | Biofuel technologies for a sustainable future India and beyond Preface xi List of Figures xiii List of Tables xv List of Contributors xvii List of Abbreviations xix 1 Current Scenario of Renewable Energy in India and Its Possibilities in the Future 1 1.1 Introduction 2 1.2 Renewable Energy 3 1.2.1 Biomass 3 1.2.2 Biofuels 6 1.2.3 Small Hydro 7 1.2.4 Solar Energy 8 1.2.4.1 Grid-connected 9 1.2.4.2 Off-grid solar PV program 10 1.2.5 Wind Energy 12 1.2.6 Waste to Energy 14 1.2.7 Geothermal Energy 16 1.3 Future of Renewable Energy in India 18 1.4 Policy Gaps and Opportunities 19 1.5 Conclusion 22 References 22 2 Application of Green Nanomaterials for Sustainable Energy Systems: A Review of the Current Status 25 2.1 Introduction 26 2.2 Use of Nanotechnology for Improved Energy Efficiency 27 2.3 Nanomaterials and Sustainability Issues 30 2.4 Green Nanomaterials Enhancing the Sustainability in Energy Applications 32 2.4.1 Green Reagents Used During Nanoparticle Synthesis 33 2.4.2 Green Processes Involved in Nanoparticle Synthesis 36 2.4.3 Biomass Based Green Nanotechnology in Energy Devices 38 2.5 Conclusion 41 References 42 3 Production of Energy from Biowaste: An Overview of the Underlying Biological Technologies 51 3.1 Introduction 52 3.2 Current Technologies for Energy Generation from Biowaste 53 3.3 Anaerobic Digestion for Generation of Biogas 55 3.4 Microbial Fermentation for Bioethanol Generation 58 3.5 Microbial Fermentation for Bio-Hydrogen Generation 62 3.6 Transesterification for Biodiesel Generation 64 3.7 Discussion on Potential Challenges and Solutions for Biofuel Generation 65 3.8 Conclusion 67 References 68 4 Coconut Shell-Based Activated Carbon Supported Metal Oxides in Catalytic Cracking Activity 79 4.1 Introduction 80 4.2 Experimental Procedures 81 4.2.1 Material 81 4.2.2 Catalyst Preparation 81 4.2.3 Catalytic Cracking of Waste Cooking Oil 82 4.2.4 Product Analysis 83 4.3 Results and Discussion 84 4.3.1 Properties of Waste Cooking Oil 84 4.3.2 Catalytic Cracking of Waste Cooking Oil 84 4.3.2.1 Activated carbon-based catalysts 84 4.3.2.2 Activated carbon supported metal oxides 89 4.3.3 Characterization of Activated Carbon Supported Metal Catalysts 92 4.3.3.1 X-ray diffraction (XRD) analysis 92 4.3.3.2 Scanning electron microscopy (SEM) 95 4.3.3.3 Temperature programmed desorption (TPD) 97 4.3.3.4 Catalyst stability test 98 4.4 Conclusion 98 References 99 5 Biofuels - Are they a Sustainable Alternative? 103 5.1 Introduction 104 5.2 Abstraction of Biofuels from Food 104 5.2.1 Water Resources 105 5.2.1.1 Availability of water 105 5.2.1.2 Stored water assets 106 5.3 Water Usage 107 5.3.1 Usage of Water in the Growing Crop 107 5.4 Biofuels and their Energy Content [31] 108 5.5 Is Biomass is a form of Solar Energy [31] 113 5.6 Conclusion 114 References 115 6 Current Research Trends on the Utilization of Mono and Hybrid Nano-Fluids for Solar Energy Applications 119 6.1 Introduction 120 6.2 Nano-Fluids as Smart Fluids 121 6.2.1 Hybrid Nano-Fluids 122 6.3 Utilization of Mono/Hybrid Nano-Fluids in Solar Energy 123 6.3.1 Solar Collectors (SCs) 123 6.3.2 Photovoltaic Thermal (PV/T) System 130 6.3.3 Solar Desalination 131 6.4 Challenges with Nano-Fluid-Based Solar Technologies 134 6.5 Conclusions and Future Outlook 136 References 137 7 Modification and Application of Vegetable Oils for Biofuels 147 7.1 Introduction 147 7.2 History of Vegetable Oil as a Fuel 148 7.3 Transesterification of Vegetable Oil 150 7.4 Biodiesel Feedstock 151 7.4.1 Palm Oil 152 7.4.2 Sunflower Oil 153 7.4.3 Soybean Oil 154 7.4.4 Rapeseed Oil/Canola Oil 154 7.4.5 Rice Bran Oil 155 7.4.6 Jatropha 156 7.4.7 Used Cooking Oil 157 7.5 Biodiesel 158 7.6 The Current Senior of Biodiesel Derive from Vegetable Oil 159 7.7 Conclusion 160 References 160 8 A Green Automotive Industry for a Sustainable Future 167 8.1 Introduction 168 8.2 Scope of Development in Conventional Internal Combustion (IC) Engine 169 8.2.1 Possibility of Improvement in Short Term 170 8.2.1.1 Improvement in engine construction 170 8.2.1.2 Exhaust treatment systems 171 8.2.1.3 Changes in fuel for the IC engines 172 8.2.2 Possibility of Improvement in Long Term 172 8.2.2.1 Gasoline compression ignition (GCI) 172 8.2.2.2 Reactivity controlled compression ignition (RCCI) system 173 8.2.2.3 Octane on demand (OOD) 173 8.2.2.4 Opposed piston engines 174 8.3 Green Engine Technology 174 8.3.1 Technical features of green engine 174 8.3.2 Working of Green Engine 175 8.4 Hybrid Vehicles (HVs) 178 8.4.1 The Definition of Hybrid Vehicles (HVs) 178 8.4.2 Types of Hybrid Vehicles 179 8.4.2.1 Hybrid electric vehicles (HEVs) 179 8.4.2.2 Hybrid solar vehicle (HSVs) 181 8.4.2.3 Plug-in-hybrid electric vehicle (PHEVs) 182 8.4.3 Need HVs to Replace Conventional ICs and EVs-Why & Why Not?? 183 8.5 Hydrogen Fuel IC Engines (H2-ICEs) 184 8.5.1 Fundamental of H2-ICEs 184 8.5.2 Types of Advanced H2-ICEs 185 8.5.2.1 Pressure Based H2ICE 185 8.5.2.2 Liquid-hydrogen-fueled internal combustion engine (l-H2-ICEs) 186 8.5.2.3 Direct-injection hydrogen-fueled internal combustion engine (DI-H2ICE) 186 8.5.2.4 H2-ICE-electric hybrid 187 8.6 Conclusion 188 References 189 9 Thermochemical Conversions of Contaminated Biomass for Sustainable Phytoremediation 193 9.1 Introduction 194 9.2 Biomass Fuels Contaminated with Heavy Metals 195 9.3 Combustion 196 9.3.1 Fundamentals of Solid Biomass Combustion 196 9.3.2 Fluidized Bed Combustion for Solid Biomass Fuels 200 9.3.3 Ash Formation and Fate of Heavy Metals During Combustion of Solid Fuels 201 9.3.4 Combustion Relevant for phytoremediation Plant Biomass Contaminated with Heavy Metals 204 9.4 Gasification 206 9.4.1 Gasification Fundamentals 206 9.4.2 Gasification Relevant for Phytoremediation Plant Biomass Contaminated with Heavy Metals 208 9.5 Pyrolysis 208 9.5.1 Pyrolysis Fundamentals 208 9.5.2 Pyrolysis Relevant for Phytoremediation Plant Biomass Contaminated with Heavy Metals 210 9.6 Hydrothermal Processing 211 9.6.1 Fundamentals of Hydrothermal Treatments of Biomass 211 9.6.2 Hydrothermal Treatments Relevant for Phytoremediation Plant Biomass Contaminated with Heavy Metals 213 9.7 Conclusion and Perspective 215 References 216 Index 225 About the Editors 227 Biokraftstoff (DE-588)4145658-0 gnd Nachhaltigkeit (DE-588)4326464-5 gnd |
subject_GND | (DE-588)4145658-0 (DE-588)4326464-5 |
title | Biofuel technologies for a sustainable future India and beyond |
title_auth | Biofuel technologies for a sustainable future India and beyond |
title_exact_search | Biofuel technologies for a sustainable future India and beyond |
title_exact_search_txtP | Biofuel technologies for a sustainable future India and beyond |
title_full | Biofuel technologies for a sustainable future India and beyond editors, Yashvir Singh, Prateek Negi, Wei Hsin Chen |
title_fullStr | Biofuel technologies for a sustainable future India and beyond editors, Yashvir Singh, Prateek Negi, Wei Hsin Chen |
title_full_unstemmed | Biofuel technologies for a sustainable future India and beyond editors, Yashvir Singh, Prateek Negi, Wei Hsin Chen |
title_short | Biofuel technologies for a sustainable future |
title_sort | biofuel technologies for a sustainable future india and beyond |
title_sub | India and beyond |
topic | Biokraftstoff (DE-588)4145658-0 gnd Nachhaltigkeit (DE-588)4326464-5 gnd |
topic_facet | Biokraftstoff Nachhaltigkeit |
url | https://ieeexplore.ieee.org/book/9967440 https://www.taylorfrancis.com/books/9781003338321 https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=3619641 |
work_keys_str_mv | AT singhyashvir biofueltechnologiesforasustainablefutureindiaandbeyond AT negiprateek biofueltechnologiesforasustainablefutureindiaandbeyond AT chenweixin biofueltechnologiesforasustainablefutureindiaandbeyond |