Numerical methods in physics with Python:
Bringing together idiomatic Python programming, foundational numerical methods, and physics applications, this is an ideal standalone textbook for courses on computational physics. All the frequently used numerical methods in physics are explained, including foundational techniques and hidden gems o...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom
Cambridge University Press
2023
|
Ausgabe: | Second edition |
Schlagworte: | |
Online-Zugang: | DE-12 DE-634 DE-M347 DE-92 Volltext |
Zusammenfassung: | Bringing together idiomatic Python programming, foundational numerical methods, and physics applications, this is an ideal standalone textbook for courses on computational physics. All the frequently used numerical methods in physics are explained, including foundational techniques and hidden gems on topics such as linear algebra, differential equations, root-finding, interpolation, and integration. The second edition of this introductory book features several new codes and 140 new problems (many on physics applications), as well as new sections on the singular-value decomposition, derivative-free optimization, Bayesian linear regression, neural networks, and partial differential equations. The last section in each chapter is an in-depth project, tackling physics problems that cannot be solved without the use of a computer. Written primarily for students studying computational physics, this textbook brings the non-specialist quickly up to speed with Python before looking in detail at the numerical methods often used in the subject |
Beschreibung: | Title from publisher's bibliographic system (viewed on 30 Aug 2023) |
Beschreibung: | 1 Online-Ressource (xvi, 688 Seiten) |
ISBN: | 9781009303897 |
DOI: | 10.1017/9781009303897 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV049455545 | ||
003 | DE-604 | ||
005 | 20240226 | ||
007 | cr|uuu---uuuuu | ||
008 | 231206s2023 |||| o||u| ||||||eng d | ||
020 | |a 9781009303897 |c Online |9 978-1-009-30389-7 | ||
024 | 7 | |a 10.1017/9781009303897 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781009303897 | ||
035 | |a (OCoLC)1424561495 | ||
035 | |a (DE-599)BVBBV049455545 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-634 |a DE-M347 |a DE-83 | ||
082 | 0 | |a 530.150285/53 | |
084 | |a ST 630 |0 (DE-625)143685: |2 rvk | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
084 | |a ST 250 |0 (DE-625)143626: |2 rvk | ||
100 | 1 | |a Gezerlis, Alex |d ca. 20./21. Jh. |0 (DE-588)1218249439 |4 aut | |
245 | 1 | 0 | |a Numerical methods in physics with Python |c Alex Gezerlis, University of Guelph |
250 | |a Second edition | ||
264 | 1 | |a Cambridge, United Kingdom |b Cambridge University Press |c 2023 | |
300 | |a 1 Online-Ressource (xvi, 688 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 30 Aug 2023) | ||
520 | |a Bringing together idiomatic Python programming, foundational numerical methods, and physics applications, this is an ideal standalone textbook for courses on computational physics. All the frequently used numerical methods in physics are explained, including foundational techniques and hidden gems on topics such as linear algebra, differential equations, root-finding, interpolation, and integration. The second edition of this introductory book features several new codes and 140 new problems (many on physics applications), as well as new sections on the singular-value decomposition, derivative-free optimization, Bayesian linear regression, neural networks, and partial differential equations. The last section in each chapter is an in-depth project, tackling physics problems that cannot be solved without the use of a computer. Written primarily for students studying computational physics, this textbook brings the non-specialist quickly up to speed with Python before looking in detail at the numerical methods often used in the subject | ||
650 | 4 | |a Mathematical physics / Data processing | |
650 | 4 | |a Numerical analysis / Data processing | |
650 | 4 | |a Python (Computer program language) | |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 0 | 1 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | 2 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-009-30385-9 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-009-30386-6 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781009303897 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
966 | e | |u https://doi.org/10.1017/9781009303897 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009303897 |l DE-634 |p ZDB-20-CBO |q BTU_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009303897 |l DE-M347 |p ZDB-20-CBO |q FHM_Einzelkauf |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009303897 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1805083281187667968 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Gezerlis, Alex ca. 20./21. Jh |
author_GND | (DE-588)1218249439 |
author_facet | Gezerlis, Alex ca. 20./21. Jh |
author_role | aut |
author_sort | Gezerlis, Alex ca. 20./21. Jh |
author_variant | a g ag |
building | Verbundindex |
bvnumber | BV049455545 |
classification_rvk | ST 630 SK 950 ST 250 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781009303897 (OCoLC)1424561495 (DE-599)BVBBV049455545 |
dewey-full | 530.150285/53 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.150285/53 |
dewey-search | 530.150285/53 |
dewey-sort | 3530.150285 253 |
dewey-tens | 530 - Physics |
discipline | Physik Informatik Mathematik |
discipline_str_mv | Physik Informatik Mathematik |
doi_str_mv | 10.1017/9781009303897 |
edition | Second edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV049455545</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240226</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">231206s2023 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009303897</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-009-30389-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781009303897</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781009303897</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1424561495</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049455545</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.150285/53</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 630</subfield><subfield code="0">(DE-625)143685:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gezerlis, Alex</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1218249439</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical methods in physics with Python</subfield><subfield code="c">Alex Gezerlis, University of Guelph</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvi, 688 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 30 Aug 2023)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Bringing together idiomatic Python programming, foundational numerical methods, and physics applications, this is an ideal standalone textbook for courses on computational physics. All the frequently used numerical methods in physics are explained, including foundational techniques and hidden gems on topics such as linear algebra, differential equations, root-finding, interpolation, and integration. The second edition of this introductory book features several new codes and 140 new problems (many on physics applications), as well as new sections on the singular-value decomposition, derivative-free optimization, Bayesian linear regression, neural networks, and partial differential equations. The last section in each chapter is an in-depth project, tackling physics problems that cannot be solved without the use of a computer. Written primarily for students studying computational physics, this textbook brings the non-specialist quickly up to speed with Python before looking in detail at the numerical methods often used in the subject</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical physics / Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis / Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-009-30385-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-009-30386-6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781009303897</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009303897</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009303897</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BTU_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009303897</subfield><subfield code="l">DE-M347</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHM_Einzelkauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009303897</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV049455545 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:13:48Z |
indexdate | 2024-07-20T07:46:03Z |
institution | BVB |
isbn | 9781009303897 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034801355 |
oclc_num | 1424561495 |
open_access_boolean | |
owner | DE-12 DE-92 DE-634 DE-M347 DE-83 |
owner_facet | DE-12 DE-92 DE-634 DE-M347 DE-83 |
physical | 1 Online-Ressource (xvi, 688 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO BTU_PDA_CBO ZDB-20-CBO FHM_Einzelkauf ZDB-20-CBO FHN_PDA_CBO |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Gezerlis, Alex ca. 20./21. Jh. (DE-588)1218249439 aut Numerical methods in physics with Python Alex Gezerlis, University of Guelph Second edition Cambridge, United Kingdom Cambridge University Press 2023 1 Online-Ressource (xvi, 688 Seiten) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 30 Aug 2023) Bringing together idiomatic Python programming, foundational numerical methods, and physics applications, this is an ideal standalone textbook for courses on computational physics. All the frequently used numerical methods in physics are explained, including foundational techniques and hidden gems on topics such as linear algebra, differential equations, root-finding, interpolation, and integration. The second edition of this introductory book features several new codes and 140 new problems (many on physics applications), as well as new sections on the singular-value decomposition, derivative-free optimization, Bayesian linear regression, neural networks, and partial differential equations. The last section in each chapter is an in-depth project, tackling physics problems that cannot be solved without the use of a computer. Written primarily for students studying computational physics, this textbook brings the non-specialist quickly up to speed with Python before looking in detail at the numerical methods often used in the subject Mathematical physics / Data processing Numerical analysis / Data processing Python (Computer program language) Datenanalyse (DE-588)4123037-1 gnd rswk-swf Python Programmiersprache (DE-588)4434275-5 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Python Programmiersprache (DE-588)4434275-5 s Datenanalyse (DE-588)4123037-1 s Numerisches Verfahren (DE-588)4128130-5 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-009-30385-9 Erscheint auch als Druck-Ausgabe 978-1-009-30386-6 https://doi.org/10.1017/9781009303897 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Gezerlis, Alex ca. 20./21. Jh Numerical methods in physics with Python Mathematical physics / Data processing Numerical analysis / Data processing Python (Computer program language) Datenanalyse (DE-588)4123037-1 gnd Python Programmiersprache (DE-588)4434275-5 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
subject_GND | (DE-588)4123037-1 (DE-588)4434275-5 (DE-588)4128130-5 |
title | Numerical methods in physics with Python |
title_auth | Numerical methods in physics with Python |
title_exact_search | Numerical methods in physics with Python |
title_exact_search_txtP | Numerical methods in physics with Python |
title_full | Numerical methods in physics with Python Alex Gezerlis, University of Guelph |
title_fullStr | Numerical methods in physics with Python Alex Gezerlis, University of Guelph |
title_full_unstemmed | Numerical methods in physics with Python Alex Gezerlis, University of Guelph |
title_short | Numerical methods in physics with Python |
title_sort | numerical methods in physics with python |
topic | Mathematical physics / Data processing Numerical analysis / Data processing Python (Computer program language) Datenanalyse (DE-588)4123037-1 gnd Python Programmiersprache (DE-588)4434275-5 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
topic_facet | Mathematical physics / Data processing Numerical analysis / Data processing Python (Computer program language) Datenanalyse Python Programmiersprache Numerisches Verfahren |
url | https://doi.org/10.1017/9781009303897 |
work_keys_str_mv | AT gezerlisalex numericalmethodsinphysicswithpython |