An introduction to partial differential equations:
This textbook is an introduction to the methods needed to solve partial differential equations (PDEs). Readers are introduced to PDEs that come from a variety of fields in engineering and the natural sciences. The chapters include the following topics: First Order PDEs, Second Order PDEs, Fourier Se...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham, Switzerland
Springer
[2023]
|
Ausgabe: | Second edition |
Schriftenreihe: | Synthesis lectures on mathematics & statistics
|
Schlagworte: | |
Zusammenfassung: | This textbook is an introduction to the methods needed to solve partial differential equations (PDEs). Readers are introduced to PDEs that come from a variety of fields in engineering and the natural sciences. The chapters include the following topics: First Order PDEs, Second Order PDEs, Fourier Series, Separation of Variables, the Fourier Transform, and higher dimensional problems. Readers are guided through these chapters where techniques for solving first and second order PDEs are introduced. Each chapter ends with series of exercises to facilitate learning as well as illustrate the material presented in each chapter. In addition, this book: Introduces methods and techniques for solving first and second order PDEs Presents the main four PDEs (the advection equation, the diffusion equation, Laplace's equation, and the wave equation), which are considered to be the cornerstone of Applied Mathematics Contains numerous exercises throughout to facilitate learning and has been class tested over the past 10 years |
Beschreibung: | x, 203 Seiten Diagramme |
ISBN: | 9783031220869 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV049452755 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 231205s2023 |||| |||| 00||| eng d | ||
020 | |a 9783031220869 |9 978-3-031-22086-9 | ||
035 | |a (OCoLC)1371481188 | ||
035 | |a (DE-599)BVBBV049452755 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1050 | ||
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
100 | 1 | |a Arrigo, Daniel J. |d 1960- |e Verfasser |0 (DE-588)1067544461 |4 aut | |
245 | 1 | 0 | |a An introduction to partial differential equations |c Daniel Arrigo |
250 | |a Second edition | ||
264 | 1 | |a Cham, Switzerland |b Springer |c [2023] | |
300 | |a x, 203 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Synthesis lectures on mathematics & statistics | |
520 | |a This textbook is an introduction to the methods needed to solve partial differential equations (PDEs). Readers are introduced to PDEs that come from a variety of fields in engineering and the natural sciences. The chapters include the following topics: First Order PDEs, Second Order PDEs, Fourier Series, Separation of Variables, the Fourier Transform, and higher dimensional problems. Readers are guided through these chapters where techniques for solving first and second order PDEs are introduced. Each chapter ends with series of exercises to facilitate learning as well as illustrate the material presented in each chapter. In addition, this book: Introduces methods and techniques for solving first and second order PDEs Presents the main four PDEs (the advection equation, the diffusion equation, Laplace's equation, and the wave equation), which are considered to be the cornerstone of Applied Mathematics Contains numerous exercises throughout to facilitate learning and has been class tested over the past 10 years | ||
650 | 4 | |a Differential equations | |
650 | 4 | |a Fourier analysis | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Équations différentielles | |
650 | 4 | |a Analyse de Fourier | |
650 | 4 | |a Mathématiques | |
650 | 7 | |a Differential equations |2 fast | |
650 | 7 | |a Fourier analysis |2 fast | |
650 | 7 | |a Mathematics |2 fast | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-031-22087-6 |
999 | |a oai:aleph.bib-bvb.de:BVB01-034798615 |
Datensatz im Suchindex
_version_ | 1804186219097096193 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Arrigo, Daniel J. 1960- |
author_GND | (DE-588)1067544461 |
author_facet | Arrigo, Daniel J. 1960- |
author_role | aut |
author_sort | Arrigo, Daniel J. 1960- |
author_variant | d j a dj dja |
building | Verbundindex |
bvnumber | BV049452755 |
classification_rvk | SK 540 |
ctrlnum | (OCoLC)1371481188 (DE-599)BVBBV049452755 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02342nam a2200421 c 4500</leader><controlfield tag="001">BV049452755</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">231205s2023 |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031220869</subfield><subfield code="9">978-3-031-22086-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1371481188</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV049452755</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Arrigo, Daniel J.</subfield><subfield code="d">1960-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1067544461</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to partial differential equations</subfield><subfield code="c">Daniel Arrigo</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham, Switzerland</subfield><subfield code="b">Springer</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">x, 203 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Synthesis lectures on mathematics & statistics</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This textbook is an introduction to the methods needed to solve partial differential equations (PDEs). Readers are introduced to PDEs that come from a variety of fields in engineering and the natural sciences. The chapters include the following topics: First Order PDEs, Second Order PDEs, Fourier Series, Separation of Variables, the Fourier Transform, and higher dimensional problems. Readers are guided through these chapters where techniques for solving first and second order PDEs are introduced. Each chapter ends with series of exercises to facilitate learning as well as illustrate the material presented in each chapter. In addition, this book: Introduces methods and techniques for solving first and second order PDEs Presents the main four PDEs (the advection equation, the diffusion equation, Laplace's equation, and the wave equation), which are considered to be the cornerstone of Applied Mathematics Contains numerous exercises throughout to facilitate learning and has been class tested over the past 10 years</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations différentielles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analyse de Fourier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fourier analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-031-22087-6</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-034798615</subfield></datafield></record></collection> |
id | DE-604.BV049452755 |
illustrated | Not Illustrated |
index_date | 2024-07-03T23:13:17Z |
indexdate | 2024-07-10T10:07:39Z |
institution | BVB |
isbn | 9783031220869 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-034798615 |
oclc_num | 1371481188 |
open_access_boolean | |
owner | DE-1050 |
owner_facet | DE-1050 |
physical | x, 203 Seiten Diagramme |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Springer |
record_format | marc |
series2 | Synthesis lectures on mathematics & statistics |
spelling | Arrigo, Daniel J. 1960- Verfasser (DE-588)1067544461 aut An introduction to partial differential equations Daniel Arrigo Second edition Cham, Switzerland Springer [2023] x, 203 Seiten Diagramme txt rdacontent n rdamedia nc rdacarrier Synthesis lectures on mathematics & statistics This textbook is an introduction to the methods needed to solve partial differential equations (PDEs). Readers are introduced to PDEs that come from a variety of fields in engineering and the natural sciences. The chapters include the following topics: First Order PDEs, Second Order PDEs, Fourier Series, Separation of Variables, the Fourier Transform, and higher dimensional problems. Readers are guided through these chapters where techniques for solving first and second order PDEs are introduced. Each chapter ends with series of exercises to facilitate learning as well as illustrate the material presented in each chapter. In addition, this book: Introduces methods and techniques for solving first and second order PDEs Presents the main four PDEs (the advection equation, the diffusion equation, Laplace's equation, and the wave equation), which are considered to be the cornerstone of Applied Mathematics Contains numerous exercises throughout to facilitate learning and has been class tested over the past 10 years Differential equations Fourier analysis Mathematics Équations différentielles Analyse de Fourier Mathématiques Differential equations fast Fourier analysis fast Mathematics fast Erscheint auch als Online-Ausgabe 978-3-031-22087-6 |
spellingShingle | Arrigo, Daniel J. 1960- An introduction to partial differential equations Differential equations Fourier analysis Mathematics Équations différentielles Analyse de Fourier Mathématiques Differential equations fast Fourier analysis fast Mathematics fast |
title | An introduction to partial differential equations |
title_auth | An introduction to partial differential equations |
title_exact_search | An introduction to partial differential equations |
title_exact_search_txtP | An introduction to partial differential equations |
title_full | An introduction to partial differential equations Daniel Arrigo |
title_fullStr | An introduction to partial differential equations Daniel Arrigo |
title_full_unstemmed | An introduction to partial differential equations Daniel Arrigo |
title_short | An introduction to partial differential equations |
title_sort | an introduction to partial differential equations |
topic | Differential equations Fourier analysis Mathematics Équations différentielles Analyse de Fourier Mathématiques Differential equations fast Fourier analysis fast Mathematics fast |
topic_facet | Differential equations Fourier analysis Mathematics Équations différentielles Analyse de Fourier Mathématiques |
work_keys_str_mv | AT arrigodanielj anintroductiontopartialdifferentialequations |